Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A synthetic luciferin improves bioluminescence imaging in live mice

This article has been updated


Firefly luciferase is the most widely used optical reporter for noninvasive bioluminescence imaging (BLI) in rodents. BLI relies on the ability of the injected luciferase substrate D-luciferin to access luciferase-expressing cells and tissues within the animal. Here we show that injection of mice with a synthetic luciferin, CycLuc1, improves BLI with existing luciferase reporters and enables imaging in the brain that could not be achieved with D-luciferin.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: BLI of tumor xenografts with D-luciferin and CycLuc1.
Figure 2: Comparison of D-luciferin and CycLuc1 in luciferase-expressing transgenic mice.
Figure 3: Comparison of D-luciferin and CycLuc1 in the brain.

Change history

  • 13 February 2014

    In the version of this article initially published online, the author name Miranda A. Paley was incorrectly spelled as Miranwda A. Paley. The error has been corrected for the print, PDF and HTML versions of this article.


  1. Contag, C.H. & Bachmann, M.H. Annu. Rev. Biomed. Eng. 4, 235–260 (2002).

    Article  CAS  Google Scholar 

  2. Dothager, R.S. et al. Curr. Opin. Biotechnol. 20, 45–53 (2009).

    Article  CAS  Google Scholar 

  3. Prescher, J.A. & Contag, C.H. Curr. Opin. Chem. Biol. 14, 80–89 (2010).

    Article  CAS  Google Scholar 

  4. Rabinovich, B.A. et al. Proc. Natl. Acad. Sci. USA 105, 14342–14346 (2008).

    Article  CAS  Google Scholar 

  5. Kim, J.-B. et al. PLoS ONE 5, e9364 (2010).

    Article  Google Scholar 

  6. Mezzanotte, L. et al. Mol. Imaging Biol. 12, 406–414 (2010).

    Article  Google Scholar 

  7. Harwood, K.R., Mofford, D.M., Reddy, G.R. & Miller, S.C. Chem. Biol. 18, 1649–1657 (2011).

    Article  CAS  Google Scholar 

  8. Shinde, R., Perkins, J. & Contag, C.H. Biochemistry 45, 11103–11112 (2006).

    Article  CAS  Google Scholar 

  9. Berger, F., Paulmurugan, R., Bhaumik, S. & Gambhir, S.S. Eur. J. Nucl. Med. Mol. Imaging 35, 2275–2285 (2008).

    Article  Google Scholar 

  10. Kojima, R. et al. Angew. Chem. Int. Edn. Engl. 52, 1175–1179 (2013).

    Article  CAS  Google Scholar 

  11. Conley, N.R., Dragulescu-Andrasi, A., Rao, J. & Moerner, W.E. Angew. Chem. Int. Ed. 51, 3350–3353 (2012).

    Article  CAS  Google Scholar 

  12. Zhao, H. et al. J. Biomed. Opt. 10, 41210 (2005).

    Article  Google Scholar 

  13. McCutcheon, D.C., Paley, M.A., Steinhardt, R.C. & Prescher, J.A. J. Am. Chem. Soc. 134, 7604–7607 (2012).

    Article  CAS  Google Scholar 

  14. Woodroofe, C.C. et al. Biochemistry 51, 9807–9813 (2012).

    Article  CAS  Google Scholar 

  15. Reddy, G.R., Thompson, W.C. & Miller, S.C. J. Am. Chem. Soc. 132, 13586–13587 (2010).

    Article  CAS  Google Scholar 

  16. Woodroofe, C.C. et al. Biochemistry 47, 10383–10393 (2008).

    Article  CAS  Google Scholar 

  17. Cao, Y.-A. et al. Proc. Natl. Acad. Sci. USA 101, 221–226 (2004).

    Article  CAS  Google Scholar 

  18. Zhang, H. et al. Mol. Ther. 19, 1440–1448 (2011).

    Article  CAS  Google Scholar 

  19. Safran, M. et al. Mol. Imaging 2, 297–302 (2003).

    Article  CAS  Google Scholar 

  20. Madisen, L. et al. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  Google Scholar 

  21. Bäckman, C.M. et al. Genesis 44, 383–390 (2006).

    Article  Google Scholar 

Download references


This work was supported by grants from the US National Institutes of Health (R01EB013270 to S.C.M. and NS38194 to N.A.), the CHDI (to N.A.), the American Cancer Society (IRG-98-279-07 to J.A.P.) and the University of California, Irvine, School of Physical Sciences (to J.A.P.).

Author information

Authors and Affiliations



M.S.E. and J.A.P. imaged tumors and L2G85-FVB mice, G.R.R. synthesized CycLuc1, M.A.P. imaged cultured cells, J.P.C. bred Dat mice, S.T.A. and J.P.C. imaged AAV9 and Dat mice, N.A. contributed to the development of AAV9 and Dat mouse models and manuscript editing, S.C.M. designed CycLuc1, and S.C.M. and J.A.P. led the study and wrote the manuscript.

Corresponding authors

Correspondence to Jennifer A Prescher or Stephen C Miller.

Ethics declarations

Competing interests

The University of Massachusetts Medical School, at which some of the authors are employed, holds patents on luciferin substrates (US7910087 and US8216550), for which the assignee is the University of Massachusetts and the inventor is Stephen C. Miller.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 5299 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Evans, M., Chaurette, J., Adams, S. et al. A synthetic luciferin improves bioluminescence imaging in live mice. Nat Methods 11, 393–395 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing