Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epigenome-wide association studies without the need for cell-type composition

Abstract

In epigenome-wide association studies, cell-type composition often differs between cases and controls, yielding associations that simply tag cell type rather than reveal fundamental biology. Current solutions require actual or estimated cell-type composition—information not easily obtainable for many samples of interest. We propose a method, FaST-LMM-EWASher, that automatically corrects for cell-type composition without the need for explicit knowledge of it, and then validate our method by comparison with the state-of-the-art approach. Corresponding software is available from http://www.microsoft.com/science/.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: RA methylation analysis for 354 cases and 312 controls across 103,638 loci1.
Figure 2: Simulated data with cell-type composition characteristics based on the actual RA data used in Figure 1 (354 cases and 312 controls across 103,638 loci).

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Liu, Y. et al. Nat. Biotechnol. 31, 142–147 (2013).

    Article  CAS  Google Scholar 

  2. Koestler, D.C. et al. Epigenetics 8, 816–826 (2013).

    Article  CAS  Google Scholar 

  3. Reinius, L.E. et al. PLoS ONE 7, e41361 (2012).

    Article  CAS  Google Scholar 

  4. Lam, L.L. et al. Proc. Natl. Acad. Sci. USA 109 (suppl. 2), 17253–17260 (2012).

    Article  CAS  Google Scholar 

  5. Rakyan, V. K., Down, T.A., Balding, D. J. & Beck, S. Nat. Rev. Genet. 12, 529–541 (2011).

    Article  CAS  Google Scholar 

  6. Lippert, C. et al. Nat. Methods 8, 833–835 (2011).

    Article  CAS  Google Scholar 

  7. Listgarten, J. et al. Nat. Methods 9, 525–526 (2012).

    Article  CAS  Google Scholar 

  8. Lippert, C. et al. Sci. Rep. 3, 1815 (2013).

    Article  Google Scholar 

  9. Houseman, E.A. et al. BMC Bioinformatics 13, 86 (2012).

    Article  Google Scholar 

  10. Devlin, B., Roeder, K. & Wasserman, L. Theor. Popul. Biol. 60, 155–166 (2001).

    Article  CAS  Google Scholar 

  11. Heichman, K.A. & Warren, J.D. Clin. Chem. Lab. Med. 50, 1707–1721 (2012).

    Article  CAS  Google Scholar 

  12. Hanavadi, S., Martin, T.A., Watkins, G., Mansel, R.E. & Jiang, W.G. Ann. Surg. Oncol. 13, 802–808 (2006).

    Article  Google Scholar 

  13. The Cancer Genome Atlas Network. Nature 490, 61–70 (2012).

  14. Bortsov, A.V. et al. Anesthesiology 116, 896–902 (2012).

    Article  CAS  Google Scholar 

  15. Huang, B. et al. Oncogene 31, 527–534 (2012).

    Article  CAS  Google Scholar 

  16. Balding, D.J. Nat. Rev. Genet. 7, 781–791 (2006).

    Article  CAS  Google Scholar 

  17. Devlin, B. & Roeder, K. Biometrics 55, 997–1004 (1999).

    Article  CAS  Google Scholar 

  18. Yang, J. et al. Eur. J. Hum. Genet. 19, 807–812 (2011).

    Article  Google Scholar 

  19. Price, A.L., Zaitlen, N.A., Reich, D. & Patterson, N. Nat. Rev. Genet. 11, 459–463 (2010).

    Article  CAS  Google Scholar 

  20. Huang, D.W., Sherman, B.T. & Lempicki, R.A. Nucleic Acids Res. 37, 1–13 (2009).

    Article  Google Scholar 

  21. Huang, D.W., Sherman, B.T. & Lempicki, R.A. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Yamanaka for helpful feedback on the manuscript and D. Koestler, M. Kobor, G. Quon for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

J.Z. and J.L. designed research, performed research, contributed analytic tools, analyzed data and wrote the paper. C.L. and D.H. contributed analytic tools. M.A. designed research.

Corresponding authors

Correspondence to James Zou or Jennifer Listgarten.

Ethics declarations

Competing interests

J.Z., C.L., D.H. and J.L. were employees of Microsoft at the time this work was performed.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Tables 1–3 and Supplementary Notes 1 and 2. (PDF 2262 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zou, J., Lippert, C., Heckerman, D. et al. Epigenome-wide association studies without the need for cell-type composition. Nat Methods 11, 309–311 (2014). https://doi.org/10.1038/nmeth.2815

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2815

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing