Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The potential of optofluidic biolasers

Abstract

Optofluidic biolasers are emerging as a highly sensitive way to measure changes in biological molecules. Biolasers, which incorporate biological material into the gain medium and contain an optical cavity in a fluidic environment, can use the amplification that occurs during laser generation to quantify tiny changes in biological processes in the gain medium. We describe the principle of the optofluidic biolaser, review recent progress and provide our outlooks on potential applications and directions for developing this technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of fluorescence-based detection and laser-based detection.
Figure 2: Optofluidic lasers.
Figure 3: Biochemical sensing applications of optofluidic lasers.
Figure 4: Cell-based optofluidic lasers with potential applications.

Similar content being viewed by others

References

  1. Psaltis, D., Quake, S.R. & Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381–386 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Monat, C., Domachuk, P. & Eggleton, B.J. Integrated optofluidics: a new river of light. Nat. Photonics 1, 106–114 (2007).

    Article  CAS  Google Scholar 

  3. Fan, X. & White, I.M. Optofluidic microsystems for chemical and biological analysis. Nat. Photonics 5, 591–597 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schmidt, H. & Hawkins, A.R. The photonic integration of non-solid media using optofluidics. Nat. Photonics 5, 598–604 (2011).

    Article  CAS  Google Scholar 

  5. Hawkins, A.R. & Schmidt, H. Handbook of Optofluidics (CRC Press, Boca Raton, Florida, USA, 2010).

  6. Fainman, Y., Lee, L.P., Psaltis, D. & Yang, C. Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, New York, 2010).

  7. Gather, M.C. & Yun, S.H. Single-cell biological lasers. Nat. Photonics 5, 406–410 (2011). First live-cell laser.

    Article  CAS  Google Scholar 

  8. Polson, R.C. & Vardeny, Z.V. Random lasing in human tissues. Appl. Phys. Lett. 85, 1289 (2004). Random lasers are important in dealing with disordered gain media such as tissues.

    Article  CAS  Google Scholar 

  9. Song, Q. et al. Random lasing in bone tissue. Opt. Lett. 35, 1425–1427 (2010).

    Article  PubMed  Google Scholar 

  10. Helbo, B., Kristensen, A. & Menon, A. A micro-cavity fluidic dye laser. J. Micromech. Microeng. 13, 307–311 (2003).

    Article  CAS  Google Scholar 

  11. Cheng, Y., Sugioka, K. & Midorikawa, K. Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. Opt. Lett. 29, 2007–2009 (2004).

    Article  PubMed  Google Scholar 

  12. Balslev, S. & Kristensen, A. Microfluidic single-mode laser using high-order Bragg grating and antiguiding segments. Opt. Express 13, 344–351 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Li, Z., Zhang, Z., Emery, T., Scherer, A. & Psaltis, D. Single mode optofluidic distributed feedback dye laser. Opt. Express 14, 696–701 (2006).

    Article  PubMed  Google Scholar 

  14. Shopova, S.I., Zhu, H., Fan, X. & Zhang, P. Optofluidic ring resonator based dye laser. Appl. Phys. Lett. 90, 221101 (2007).

    Article  CAS  Google Scholar 

  15. Shopova, S.I. et al. Opto-fluidic ring resonator lasers based on highly efficient resonant energy transfer. Opt. Express 15, 12735–12742 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Li, Z. & Psaltis, D. Optofluidic dye lasers. Microfluid. Nanofluidics 4, 145–158 (2008).

    Article  CAS  Google Scholar 

  17. Galas, J.C., Peroz, C., Kou, Q. & Chen, Y. Microfluidic dye laser intracavity absorption. Appl. Phys. Lett. 89, 224101 (2006).

    Article  CAS  Google Scholar 

  18. Sun, Y., Shopova, S.I., Wu, C.-S., Arnold, S. & Fan, X. Bioinspired optofluidic FRET lasers via DNA scaffolds. Proc. Natl. Acad. Sci. USA 107, 16039–16042 (2010).Optofluidic biolaser through DNA-controlled FRET processes.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gather, M.C. & Yun, S.H. Lasing from Escherichia coli bacteria genetically programmed to express green fluorescent protein. Opt. Lett. 36, 3299–3301 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Sun, Y. & Fan, X. Distinguishing DNA by analog-to-digital-like conversion by using optofluidic lasers. Angew. Chem. Int. Ed. Engl. 51, 1236–1239 (2012).First paper to use the optofluidic biolaser for analysis of biomolecular interactions; the theoretical analysis therein laid the foundation for optofluidic biolaser sensors.

    Article  CAS  PubMed  Google Scholar 

  21. Lee, W. & Fan, X. Intracavity DNA melting analysis with optofluidic lasers. Anal. Chem. 84, 9558–9563 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, X., Lee, W. & Fan, X. Bio-switchable optofluidic lasers based on DNA Holliday junctions. Lab Chip 12, 3673–3675 (2012).Sensitive detection of biomolecule conformational change using the optofluidic biolaser.

    Article  CAS  PubMed  Google Scholar 

  23. Chen, Q. et al. Highly sensitive fluorescent protein FRET detection using optofluidic lasers. Lab Chip 13, 2679–2681 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, Y. et al. Optofluidic microcavities: dye-lasers and biosensors. Biomicrofluidics 4, 043002 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nizamoglu, S., Gather, M.C. & Yun, S.H. All-biomaterial laser using vitamin and biopolymers. Adv. Mater. doi:10.1002/adma.201300818 (31 July 2013).

  26. Joannopoulos, J.D., Johnson, S.G., Winn, J.N. & Meade, R.D. Photonic Crystals: Molding the Flow of Light 2nd edn. (Princeton Univ. Press, 2008).

  27. Cao, H. et al. Random laser action in semiconductor powder. Phys. Rev. Lett. 82, 2278–2281 (1999).

    Article  CAS  Google Scholar 

  28. Cerdán, L. et al. FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles. Nat. Photonics 6, 621–626 (2012).

    Article  CAS  Google Scholar 

  29. Huang, M.H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Noginov, M.A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Ma, R.-M., Oulton, R.F., Sorger, V.J., Bartal, G. & Zhang, X. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nat. Mater. 10, 110–113 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Cho, C.-H., Aspetti, C.O., Park, J. & Agarwal, R. Silicon coupled with plasmon nanocavities generates bright visible hot luminescence. Nat. Photonics 7, 285–289 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oulton, R.F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Horiuchi, T., Niwa, O. & Hatakenaka, N. Evidence for laser action driven by electrochemiluminescence. Nature 394, 659–661 (1998).

    Article  CAS  Google Scholar 

  35. Chen, Q. et al. Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control. Lab Chip 13, 3351–3354 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Hell, S.W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, M.C., Min, W., Freudiger, C.W., Ruvkun, G. & Xie, X.S. RNAi screening for fat regulatory genes with SRS microscopy. Nat. Methods 8, 135–138 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Min, W. et al. Imaging chromophores with undetectable fluorescence by stimulated emission microscopy. Nature 461, 1105–1109 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, P. et al. Far-field imaging of non-fluorescent species with sub-diffraction resolution. Nat. Photonics 7, 449–453 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nadkarni, S.K. et al. Characterization of atherosclerotic plaques by laser speckle imaging. Circulation 112, 885–892 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mason, T.G. & Weitz, D.A. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74, 1250–1253 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Siegman, A.E. Lasers (Univ. Science Books, 1986).

  43. International Commission on Non-Ionizing Radiation Protection. Revision of guidelines on limits of exposure to laser radiation of wavelengths between 400 nm and 1.4 μm. Health Phys. 79, 431–440 (2000).

  44. Hänsch, T.W. Edible lasers and other delights of the 1970s. Opt. Photonics News 16, 14–16 (2005).

    Article  Google Scholar 

  45. Song, W., Vasdekis, A.E., Li, Z. & Psaltis, D. Optofluidic evanescent dye laser based on a distributed feedback circular grating. Appl. Phys. Lett. 94, 161110 (2009).

    Article  CAS  Google Scholar 

  46. Qian, S.-X., Snow, J.B., Tzeng, H.-M. & Chang, R.K. Lasing droplets: highlighting the liquid-air interface by laser emission. Science 231, 486–488 (1986).

    Article  CAS  PubMed  Google Scholar 

  47. Moon, H.-J., Chough, Y.-T. & An, K. Cylindrical microcavity laser based on the evanescent-wave-coupled gain. Phys. Rev. Lett. 85, 3161–3164 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Azzouz, H. et al. Levitated droplet dye laser. Opt. Express 14, 4374–4379 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Kiraz, A. et al. Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface. Opt. Commun. 276, 145–148 (2007).

    Article  CAS  Google Scholar 

  50. Jiang, X., Song, Q., Xu, L., Fu, J. & Tong, L. Microfiber knot dye laser based on the evanescent-wave-coupled gain. Appl. Phys. Lett. 90, 233501 (2007).

    Article  CAS  Google Scholar 

  51. Tanyeri, M., Perron, R. & Kennedy, I.M. Lasing droplets in a microfabricated channel. Opt. Lett. 32, 2529–2531 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Tang, S.K.Y. et al. A multi-color fast-switching microfluidic droplet dye laser. Lab Chip 9, 2767–2771 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Schäfer, J. et al. Quantum dot microdrop laser. Nano Lett. 8, 1709–1712 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Lee, W., Luo, Y., Zhu, Q. & Fan, X. Versatile optofluidic ring resonator lasers based on microdroplets. Opt. Express 19, 19668–19674 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Yang, Y. et al. A tunable 3D optofluidic waveguide dye laser via two centrifugal Dean flow streams. Lab Chip 11, 3182–3187 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Aubry, G. et al. A multicolor microfluidic droplet dye laser with single mode emission. Appl. Phys. Lett. 98, 111111 (2011).

    Article  CAS  Google Scholar 

  57. Christiansen, M.B., Kristensen, A., Xiao, S. & Mortensen, N.A. Photonic integration in k-space: Enhancing the performance of photonic crystal dye lasers. Appl. Phys. Lett. 93, 231101 (2008).

    Article  CAS  Google Scholar 

  58. Wu, X., Chen, Q., Sun, Y. & Fan, X. Bio-inspired optofluidic lasers with luciferin. Appl. Phys. Lett. 102, 203706 (2013).

    Article  CAS  Google Scholar 

  59. Lacey, S. et al. Versatile opto-fluidic ring resonator lasers with ultra-low threshold. Opt. Express 15, 15523–15530 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the US National Science Foundation (grants CBET-1037097 and ECCS-1045621 and CBET-1158638 to X.F. and ECCS-1101947 and CBET-1264356 to S.-H.Y.) and US National Institutes of Health (P41EB015903 to S.-H.Y.). We thank D. Psaltis, Z. Li and M. Gather for providing original figures (Figs. 2b and 4b) and I. White for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xudong Fan or Seok-Hyun Yun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, X., Yun, SH. The potential of optofluidic biolasers. Nat Methods 11, 141–147 (2014). https://doi.org/10.1038/nmeth.2805

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2805

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing