Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes

Abstract

The quality of genetically encoded calcium indicators (GECIs) has improved dramatically in recent years, but high-performing ratiometric indicators are still rare. Here we describe a series of fluorescence resonance energy transfer (FRET)-based calcium biosensors with a reduced number of calcium binding sites per sensor. These 'Twitch' sensors are based on the C-terminal domain of Opsanus troponin C. Their FRET responses were optimized by a large-scale functional screen in bacterial colonies, refined by a secondary screen in rat hippocampal neuron cultures. We tested the in vivo performance of the most sensitive variants in the brain and lymph nodes of mice. The sensitivity of the Twitch sensors matched that of synthetic calcium dyes and allowed visualization of tonic action potential firing in neurons and high resolution functional tracking of T lymphocytes. Given their ratiometric readout, their brightness, large dynamic range and linear response properties, Twitch sensors represent versatile tools for neuroscience and immunology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Minimizing the calcium-binding domain in Twitch sensors.
Figure 2: Structural characterization of Twitch calcium sensors.
Figure 3: Functional screening of large FRET calcium-sensor libraries.
Figure 4: Use of Twitch-3 and Twitch-2B for high-resolution in vivo imaging in the mouse brain.
Figure 5: In vivo calcium imaging of T lymphocytes with Twitch-1 and Twitch-2B.

Accession codes

Primary accessions

Biological Magnetic Resonance Data Bank

NCBI Reference Sequence

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. 1

    Palmer, A.E., Quin, Y., Park, J.G. & McCombs, J.E. Design and application of genetically encoded biosensors. Trends Biotechnol. 29, 144–152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Looger, L.L. & Griesbeck, O. Genetically encoded neural activity indicators. Curr. Opin. Neurobiol. 22, 18–23 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Knöpfel, T. Genetically encoded optical indicators for the analysis of neuronal circuits. Nat. Rev. Neurosci. 13, 687–700 (2012).

    Article  CAS  Google Scholar 

  4. 4

    Mank, M. & Griesbeck, O. Genetically encoded calcium indicators. Chem. Rev. 108, 1550–1564 (2008).

    Article  CAS  Google Scholar 

  5. 5

    Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  Google Scholar 

  6. 6

    Heim, N. & Griesbeck, O. Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein. J. Biol. Chem. 279, 14280–14286 (2004).

    Article  CAS  Google Scholar 

  7. 7

    Wang, Q., Shui, B., Kotlikoff, M.I. & Sondermann, H. Structural basis for calcium sensing by GCaMP2. Structure 16, 1817–1827 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Akerboom, J. et al. Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J. Biol. Chem. 284, 6455–6464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Nakai, J., Ohkura, M. & Imoto, K. A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat. Biotechnol. 19, 137–141 (2001).

    Article  CAS  Google Scholar 

  10. 10

    Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32, 13819–13840 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Zariwala, H.A. et al. A Cre-cependent GCaMP3 reporter mouse for neuronal imaging in vivo. J. Neurosci. 32, 3131–3141 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Ohkura, M. et al. Genetically encoded green fluorescent Ca2+ indicators with improved detectability for neuronal Ca2+ signals. PLoS ONE 7, e51286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Akerboom, J. et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 6, 2 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Zhao, Y. et al. An expanded palette of genetically encoded Ca2+ indicators. Science 333, 1888–1891 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Nagai, T., Yamada, S., Tominaga, T., Ichikawa, M. & Miyawaki, A. Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc. Natl. Acad. Sci. USA 101, 10554–10559 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Lütcke, H. et al. Optical recording of neuronal activity with a genetically-encoded calcium indicator in anesthetized and freely moving mice. Front. Neural Circuits 4, 9 (2010).

    PubMed  PubMed Central  Google Scholar 

  18. 18

    Palmer, A.E. et al. Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem. Biol. 13, 521–530 (2006).

    Article  CAS  Google Scholar 

  19. 19

    Horikawa, K. et al. Spontaneous network activity visualized by ultrasensitive Ca2+ indicators, yellow Cameleon-Nano. Nat. Methods 7, 729–732 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Mank, M. et al. A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat. Methods 5, 805–811 (2008).

    Article  CAS  Google Scholar 

  21. 21

    Homma, R. et al. In vivo functional properties of juxtaglomerular neurons in the mouse olfactory bulb. Front. Neural Circuits 7, 23 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Kuchibhotla, K.V. et al. Aβ plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 59, 214–225 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Siffrin, V. et al. In vivo imaging of partially reversible Th17 cell-induced neuronal dysfunction in the course of encephalomyelitis. Immunity 33, 424–436 (2010).

    Article  CAS  Google Scholar 

  24. 24

    Vassylyev, D.G. et al. Crystal structure of troponin C in complex with troponin I fragment at 2.3-angstrom resolution. Proc. Natl. Acad. Sci. USA 95, 4847–4852 (1998).

    Article  CAS  Google Scholar 

  25. 25

    Gordon, A.M., Homsher, E. & Regnier, M. Regulation of contraction in striated muscle. Physiol. Rev. 80, 853–924 (2000).

    Article  CAS  Google Scholar 

  26. 26

    Direnberger, S. et al. Biocompatibility of a genetically encoded calcium indicator in a transgenic mouse model. Nat. Commun. 3, 1031 (2012).

    Article  CAS  Google Scholar 

  27. 27

    DeMaria, C.D., Soong, T.W., Alseikhan, B.A., Alvania, R.S. & Yue, D.T. Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature 411, 484–489 (2001).

    Article  CAS  Google Scholar 

  28. 28

    Mank, M. et al. A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys. J. 90, 1790–1796 (2006).

    Article  CAS  Google Scholar 

  29. 29

    Wishart, D.S. & Case, D.A. Use of chemical shifts in macromolecular structure determination. Methods Enzymol. 338, 3–34 (2001).

    Article  CAS  Google Scholar 

  30. 30

    Slupsky, C.M. & Sykes, B.D. NMR solution structure of calcium-saturated skeletal muscle troponin C. Biochemistry 34, 15953–15964 (1995).

    Article  CAS  Google Scholar 

  31. 31

    Huang, J.R. & Grzesiek, S. Ensemble calculations of unstructured proteins constrained by RDC and PRE data: a case study of urea-denatured ubiquitin. J. Am. Chem. Soc. 132, 694–705 (2010).

    Article  CAS  Google Scholar 

  32. 32

    Petoukhov, M.V. et al. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Cryst. 45, 342–350 (2012).

    Article  CAS  Google Scholar 

  33. 33

    Geiger, A. et al. Correlating calcium binding, Förster resonance energy transfer, and conformational change in the biosensor TN-XXL. Biophys. J. 102, 2401–2410 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Markwardt, M.L. et al. An improved cerulean fluorescent protein with enhanced brightness and reduced reversible photoswitching. PLoS ONE 6, e17896 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Goedhart, J. et al. Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. Nat. Methods 7, 137–139 (2010).

    Article  CAS  Google Scholar 

  36. 36

    Mues, M. et al. Real-time in vivo analysis of T cell activation in the central nervous system using a genetically encoded calcium indicator. Nat. Med. 19, 778–783 (2013).

    Article  CAS  Google Scholar 

  37. 37

    Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  Google Scholar 

  38. 38

    Bousso, P. & Moreau, H.D. Functional immunoimaging: the revolution continues. Nat. Rev. Immunol. 12, 858–864 (2012).

    Article  CAS  Google Scholar 

  39. 39

    Feske, S., Skolnik, E.Y. & Prakriya, M. Ion channels and transporters in lymphocyte function and immunity. Nat. Rev. Immunol. 12, 532–547 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Barnden, M.J. et al. Defective TCR expression in transgenic mice constructed using cDNA-based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34–40 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Ikura, M., Kay, L.E. & Bax, A. A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29, 4659–4667 (1990).

    Article  CAS  Google Scholar 

  42. 42

    Grzesiek, S. & Bax, A. An efficient experiment for sequential backbone assignment of medium sized isotopically enriched proteins. J. Magn. Reson. 99, 201–207 (1992).

    CAS  Google Scholar 

  43. 43

    Grzesiek, S. & Bax, A. Correlating backbone amide and sidechain resonances in larger proteins by multiple relayed triple resonance NMR. J. Am. Chem. Soc. 114, 6291–6293 (1992).

    Article  CAS  Google Scholar 

  44. 44

    Vuister, G.W. & Bax, A. Quantitative J correlation: a new approach for measuring homonuclear three bond J(HNHa) coupling constants in 15N-enriched proteins. J. Am. Chem. Soc. 115, 7772–7777 (1993).

    Article  CAS  Google Scholar 

  45. 45

    Hansen, M.R., Mueller, L. & Pardi, A. Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat. Struct. Biol. 5, 1065–1074 (1998).

    Article  CAS  Google Scholar 

  46. 46

    Ottiger, N., Delaglio, F. & Bax, A. Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J. Magn. Reson. 131, 373–378 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    CAS  Article  Google Scholar 

  48. 48

    Keller, R.L.J. The Computer Aided Resonance Assignment Tutorial (Cantina, 2004).

  49. 49

    Shen, Y. et al. Consistent blind protein structure generation from NMR chemical shift data. Proc. Natl. Acad. Sci. USA 105, 4685–4690 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Raman, S. et al. NMR structure determination for larger proteins using backbone-only data. Science 327, 1014–1018 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Pettersen, E.F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR 8, 477–486 (1996).

    Article  CAS  Google Scholar 

  54. 54

    Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55

    Konarev, P.V., Petoukhov, M.V., Volkov, V.V. & Svergun, D.I. ATSAS 2.1, a program package for small-angle scattering data analysis. J. Appl. Cryst. 39, 277–286 (2006).

    Article  CAS  Google Scholar 

  56. 56

    Putnam, C.D., Hammel, M., Hura, G.L. & Tainer, J.A. X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q. Rev. Biophys. 40, 191–285 (2007).

    Article  CAS  Google Scholar 

  57. 57

    Svergun, D.I., Petoukhov, M.V. & Koch, M.H.J. Determination of domain structure of proteins from X-ray solution scattering. Biophys. J. 80, 2946–2953 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Volkov, V.V. & Svergun, D.I. Uniqueness of ab initio shape determination in small-angle scattering. J. Appl. Cryst. 36, 860–864 (2003).

    Article  CAS  Google Scholar 

  59. 59

    Petoukhov, M.V. et al. New developments in the ATSAS program package for small-angle scattering data analysis. J. Appl. Cryst. 45, 342–350 (2012).

    Article  CAS  Google Scholar 

  60. 60

    Wriggers, W. & Chacon, P. Using Situs for the registration of protein structures with low-resolution bead models from X-ray solution scattering. J. Appl. Cryst. 34, 773–776 (2001).

    Article  CAS  Google Scholar 

  61. 61

    Tsien, R. & Pozzan, T. Measurement of cytosolic free Ca2+ with quin2. Methods Enzymol. 172, 230–262 (1989).

    Article  CAS  Google Scholar 

  62. 62

    Wardill, T.J. et al. A neuron-based screening platform for optimizing genetically encoded calcium indicators. PLoS ONE 8, e77728 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Niell, C.M. & Stryker, M.P. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28, 7520–7536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    Article  CAS  Google Scholar 

  65. 65

    Pologruto, T.A., Yasuda, R. & Svoboda, K. Monitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators. J. Neurosci. 24, 9572–9579 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Kerlin, A.M., Andermann, M.L., Berezovskii, V.K. & Reid, R.C. Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67, 858–871 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Brainard, D.H. The psychophysics toolbox. Spat. Vis. 10, 433–436 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Pelli, D.G. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat. Vis. 10, 437–442 (1997).

    Article  CAS  Google Scholar 

  69. 69

    Ohki, K., Chung, S., Ch'Ng, Y.H., Kara, P. & Reid, R.C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005).

    Article  CAS  Google Scholar 

  70. 70

    Garaschuk, O., Hanse, E. & Konnerth, A. Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J. Physiol. (Lond.) 507, 219–236 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Max Planck Society, the Howard Hughes Medical Institute, Deutsche Forschungsgemeinschaft (DFG) grant SFB 870 (to O. Griesbeck), DFG grant GRK1721 (to G.W.), EU FP7 EuroV1sion grant (to O. Griesbeck), US National Science Foundation grant IBN-9985315 (to T.A.), US National Science Foundation grant IOS 1145981 (to L.C.R.) and the DFG Center for Integrative Neuroscience (to O. Garaschuk).

Author information

Affiliations

Authors

Contributions

T.T. characterized the minimal domain, cloned constructs and performed protein purifications and in vitro spectroscopic characterizations; J.L. established the bacterial colony screen and performed colony screening and further protein purifications; M.M. and I.B. performed in vivo imaging of T lymphocytes; L.R., S.B., Y. Laukat and C.G. performed NMR structure determination and interpreted results; T.A. and L.C.R. cloned toadfish TnC; A.G. and T.T. collected SAXS data; G.W. calculated SAXS models; H.D. performed in vivo characterization in mouse visual cortex; Y.K., Y. Liang, G.K. and O. Garaschuk planned, performed and interpreted characterization of the sensors in cortical slices in situ and mouse olfactory bulb in vivo; T.T., T.W.C., H.D. and D.S.K. planned, performed and interpreted neuronal screening results. O. Griesbeck designed experiments, supervised sensor engineering and screening and integrated results from the collaborators. T.T., H.D., C.G., O. Garaschuk and O. Griesbeck wrote the manuscript.

Corresponding author

Correspondence to Oliver Griesbeck.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Tables 1–3 (PDF 2179 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thestrup, T., Litzlbauer, J., Bartholomäus, I. et al. Optimized ratiometric calcium sensors for functional in vivo imaging of neurons and T lymphocytes. Nat Methods 11, 175–182 (2014). https://doi.org/10.1038/nmeth.2773

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing