Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

The promise of single-cell sequencing

Individual cells of the same phenotype are commonly viewed as identical functional units of a tissue or organ. However, the deep sequencing of DNA and RNA from single cells suggests a more complex ecology of heterogeneous cell states that together produce emergent system-level function. Continuing development of high-content, real-time, multimodal single-cell measurement technologies will lead to the ultimate goal of understanding the function of an individual cell in the context of its microenvironment.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A diversity of individual cell states revealed by single-cell sequencing.

Katie Vicari

References

  1. Navin, N. et al. Nature 472, 90–94 (2011).

    Article  CAS  Google Scholar 

  2. Xu, X. et al. Cell 148, 886–895 (2012).

    Article  CAS  Google Scholar 

  3. Buss, L.W. The Evolution of Individuality (Princeton Univ. Press, 1987).

    Google Scholar 

  4. Islam, S. et al. Genome Res. 21, 1160–1167 (2011).

    Article  CAS  Google Scholar 

  5. Buckley, P.T. et al. Neuron 69, 877–884 (2011).

    Article  CAS  Google Scholar 

  6. Hashimshony, T. et al. Cell Rep. 2, 666–673 (2012).

    Article  CAS  Google Scholar 

  7. Shiroguchi, K. et al. Proc. Natl. Acad. Sci. USA 109, 1347–1352 (2012).

    Article  CAS  Google Scholar 

  8. Singer, R.H. & Ward, D.C. Proc. Natl. Acad. Sci. USA 79, 7331–7335 (1982).

    Article  CAS  Google Scholar 

  9. Sul, J.Y. et al. Proc. Natl. Acad. Sci. USA 106, 7624–7629 (2009).

    Article  CAS  Google Scholar 

  10. Kim, T.K. et al. Cell Rep. 5, 114–125 (2013).

    Article  CAS  Google Scholar 

  11. Yakubov, E. et al. Biochem. Biophys. Res. Commun. 394, 189–193 (2010).

    Article  CAS  Google Scholar 

  12. Sul, J.Y. et al. Trends Biotechnol. 30, 243–249 (2012).

    Article  CAS  Google Scholar 

  13. Zangi, L. et al. Nat. Biotechnol. 31, 898–907 (2013).

    Article  CAS  Google Scholar 

  14. Kim, J. & Eberwine, J. Trends Cell Biol. 20, 311–318 (2010).

    Article  CAS  Google Scholar 

  15. Giannoukos, G. et al. Genome Biol. 13, R23 (2012).

    Article  CAS  Google Scholar 

  16. Turnbaugh, P.J. et al. Proc. Natl. Acad. Sci. USA 107, 7503–7508 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Eberwine.

Ethics declarations

Competing interests

The aRNA procedure has been patented by the US PTO (#5,514,545, 5,723,290, 5,958,688 and 6,291,170) and the TIPeR procedure has a patent application pending in Pennsylvania. J.-Y.S. and J.K. are also co-inventors on the pending TIPeR patent.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberwine, J., Sul, JY., Bartfai, T. et al. The promise of single-cell sequencing. Nat Methods 11, 25–27 (2014). https://doi.org/10.1038/nmeth.2769

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2769

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research