Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship

Abstract

Optogenetics allows the manipulation of neural activity in freely moving animals with millisecond precision, but its application in Drosophila melanogaster has been limited. Here we show that a recently described red activatable channelrhodopsin (ReaChR) permits control of complex behavior in freely moving adult flies, at wavelengths that are not thought to interfere with normal visual function. This tool affords the opportunity to control neural activity over a broad dynamic range of stimulation intensities. Using time-resolved activation, we show that the neural control of male courtship song can be separated into (i) probabilistic, persistent and (ii) deterministic, command-like components. The former, but not the latter, neurons are subject to functional modulation by social experience, which supports the idea that they constitute a locus of state-dependent influence. This separation is not evident using thermogenetic tools, a result underscoring the importance of temporally precise control of neuronal activation in the functional dissection of neural circuits in Drosophila.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optogenetic versus thermogenetic control of Gr5a GRNs.
Figure 2: ReaChR enables light-dependent activation of CNS neurons in Drosophila.
Figure 3: Probabilistic versus deterministic optogenetic control of courtship song.
Figure 4: Social isolation lowers the threshold for ReaChR-activated male courtship behavior.
Figure 5: Optogenetic activation of pIP10 neurons is not modulated by social isolation.
Figure 6: Functional calcium imaging of P1 neurons.

Similar content being viewed by others

References

  1. Venken, K.J., Simpson, J.H. & Bellen, H.J. Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72, 202–230 (2011).

    Article  CAS  Google Scholar 

  2. Luo, L., Callaway, E.M. & Svoboda, K. Genetic dissection of neural circuits. Neuron 57, 634–660 (2008).

    Article  CAS  Google Scholar 

  3. Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article  CAS  Google Scholar 

  4. Yizhar, O., Fenno, L.E., Davidson, T.J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

    Article  CAS  Google Scholar 

  5. Schroll, C. et al. Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 16, 1741–1747 (2006).

    Article  CAS  Google Scholar 

  6. Zhang, W., Ge, W. & Wang, Z. A toolbox for light control of Drosophila behaviors through Channelrhodopsin 2-mediated photoactivation of targeted neurons. Eur. J. Neurosci. 26, 2405–2416 (2007).

    Article  Google Scholar 

  7. Suh, G.S. et al. Light activation of an innate olfactory avoidance response in Drosophila. Curr. Biol. 17, 905–908 (2007).

    Article  CAS  Google Scholar 

  8. Pulver, S.R., Pashkovski, S.L., Hornstein, N.J., Garrity, P.A. & Griffith, L.C. Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae. J. Neurophysiol. 101, 3075–3088 (2009).

    Article  Google Scholar 

  9. Gordon, M.D. & Scott, K. Motor control in a Drosophila taste circuit. Neuron 61, 373–384 (2009).

    Article  CAS  Google Scholar 

  10. Zimmermann, G. et al. Manipulation of an innate escape response in Drosophila: photoexcitation of acj6 neurons induces the escape response. PLoS ONE 4, e5100 (2009).

    Article  Google Scholar 

  11. Bellmann, D. et al. Optogenetically induced olfactory stimulation in Drosophila larvae reveals the neuronal basis of odor-aversion behavior. Front. Behav. Neurosci. 4, 27 (2010).

    Article  Google Scholar 

  12. Inagaki, H.K. et al. Visualizing neuromodulation in vivo: TANGO-mapping of dopamine signaling reveals appetite control of sugar sensing. Cell 148, 583–595 (2012).

    Article  CAS  Google Scholar 

  13. de Vries, S.E. & Clandinin, T. Optogenetic stimulation of escape behavior in Drosophila melanogaster. J. Vis. Exp. 71, e50192 (2013).

    Google Scholar 

  14. Lima, S.Q. & Miesenbock, G. Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121, 141–152 (2005).

    Article  CAS  Google Scholar 

  15. Hamada, F.N. et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature 454, 217–220 (2008).

    Article  CAS  Google Scholar 

  16. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    Article  CAS  Google Scholar 

  17. Lin, J.Y., Knutsen, P.M., Muller, A., Kleinfeld, D. & Tsien, R.Y. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16, 1499–1508 (2013).

    Article  CAS  Google Scholar 

  18. Scott, K. et al. A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104, 661–673 (2001).

    Article  CAS  Google Scholar 

  19. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  20. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  Google Scholar 

  21. Nagel, G. et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15, 2279–2284 (2005).

    Article  CAS  Google Scholar 

  22. Berndt, A., Yizhar, O., Gunaydin, L.A., Hegemann, P. & Deisseroth, K. Bi-stable neural state switches. Nat. Neurosci. 12, 229–234 (2009).

    Article  CAS  Google Scholar 

  23. Keene, A.C. & Masek, P. Optogenetic induction of aversive taste memory. Neuroscience 222, 173–180 (2012).

    Article  CAS  Google Scholar 

  24. Bianchi, D. et al. On the mechanisms underlying the depolarization block in the spiking dynamics of CA1 pyramidal neurons. J. Comput. Neurosci. 33, 207–225 (2012).

    Article  Google Scholar 

  25. Odden, J.P., Holbrook, S. & Doe, C.Q. Drosophila HB9 is expressed in a subset of motoneurons and interneurons, where it regulates gene expression and axon pathfinding. J. Neurosci. 22, 9143–9149 (2002).

    Article  CAS  Google Scholar 

  26. Tayler, T.D., Pacheco, D.A., Hergarden, A.C., Murthy, M. & Anderson, D.J. A neuropeptide circuit that coordinates sperm transfer and copulation duration in Drosophila. Proc. Natl. Acad. Sci. USA 109, 20697–20702 (2012).

    Article  CAS  Google Scholar 

  27. Stockinger, P., Kvitsiani, D., Rotkopf, S., Tirián, L. & Dickson, B.J. Neural circuitry that governs Drosophila male courtship behavior. Cell 121, 795–807 (2005).

    Article  CAS  Google Scholar 

  28. von Philipsborn, A.C. et al. Neuronal control of Drosophila courtship song. Neuron 69, 509–522 (2011).

    Article  CAS  Google Scholar 

  29. Luan, H., Peabody, N.C., Vinson, C.R. & White, B.H. Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52, 425–436 (2006).

    Article  CAS  Google Scholar 

  30. Pfeiffer, B.D. et al. Refinement of tools for targeted gene expression in Drosophila. Genetics 186, 735–755 (2010).

    Article  CAS  Google Scholar 

  31. Jenett, A. et al. A GAL4-driver line resource for Drosophila neurobiology. Cell Rep. 2, 991–1001 (2012).

    Article  CAS  Google Scholar 

  32. Pan, Y., Meissner, G.W. & Baker, B.S. Joint control of Drosophila male courtship behavior by motion cues and activation of male-specific P1 neurons. Proc. Natl. Acad. Sci. USA 109, 10065–10070 (2012).

    Article  CAS  Google Scholar 

  33. Yamaguchi, S., Desplan, C. & Heisenberg, M. Contribution of photoreceptor subtypes to spectral wavelength preference in Drosophila. Proc. Natl. Acad. Sci. USA 107, 5634–5639 (2010).

    Article  CAS  Google Scholar 

  34. Stavenga, D.G. Colour in the eyes of insects. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 188, 337–348 (2002).

    Article  CAS  Google Scholar 

  35. Hanai, S., Hamasaka, Y. & Ishida, N. Circadian entrainment to red light in Drosophila: requirement of Rhodopsin 1 and Rhodopsin 6. Neuroreport 19, 1441–1444 (2008).

    Article  CAS  Google Scholar 

  36. Clyne, J.D. & Miesenbock, G. Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell 133, 354–363 (2008).

    Article  CAS  Google Scholar 

  37. Kohatsu, S., Koganezawa, M. & Yamamoto, D. Female contact activates male-specific interneurons that trigger stereotypic courtship behavior in Drosophila. Neuron 69, 498–508 (2011).

    Article  CAS  Google Scholar 

  38. Yu, J.Y., Kanai, M.I., Demir, E., Jefferis, G.S. & Dickson, B.J. Cellular organization of the neural circuit that drives Drosophila courtship behavior. Curr. Biol. 20, 1602–1614 (2010).

    Article  CAS  Google Scholar 

  39. Dankert, H., Wang, L., Hoopfer, E.D., Anderson, D.J. & Perona, P. Automated monitoring and analysis of social behavior in Drosophila. Nat. Methods 6, 297–303 (2009).

    Article  CAS  Google Scholar 

  40. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    Article  CAS  Google Scholar 

  41. Donnelly, M.L. et al. The 'cleavage' activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring '2A-like' sequences. J. Gen. Virol. 82, 1027–1041 (2001).

    Article  CAS  Google Scholar 

  42. Li, M.Z. & Elledge, S.J. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat. Methods 4, 251–256 (2007).

    Article  CAS  Google Scholar 

  43. Pfeiffer, B.D. et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl. Acad. Sci. USA 105, 9715–9720 (2008).

    Article  CAS  Google Scholar 

  44. Wan, Y., Otsuna, H., Chien, C.B. & Hansen, C. An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research. IEEE Trans. Vis. Comput. Graph. 15, 1489–1496 (2009).

    Article  Google Scholar 

  45. Wong, A.M., Wang, J.W. & Axel, R. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109, 229–241 (2002).

    Article  CAS  Google Scholar 

  46. Hodgson, E.S., Lettvin, J.Y. & Roeder, K.D. Physiology of a primary chemoreceptor unit. Science 122, 417–418 (1955).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Deisseroth (Stanford University) and B. Pfeiffer (Janelia Farm Research Campus) for plasmids. Fly stocks were generously provided by the Bloomington Stock Center, A. Fiala (Georg-August-Universität Göttingen), G.M. Rubin, L.L. Looger, B.J. Dickson (Janelia Farm Research Campus) and P.A. Garrity (Brandeis University). We also thank members of the Anderson lab for helpful discussion and sharing of flies. H.K.I. was supported by the Nakajima Foundation. J.Y.L. was funded by Foundation of Research, Science and Technology New Zealand. The project was supported by grants from the US National Institutes of Health to R.Y.T. (NS027177) and to D.J.A. (R01DA031389-03). D.J.A. and R.Y.T. are supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

H.K.I. and D.J.A. designed the experiments. H.K.I., Y.J. and N.M. performed behavioral experiments. H.K.I. and A.M.W. created the transgenic flies. H.K.I. performed physiological experiments. E.D.H. provided P1-GAL4. J.Y.L. and R.Y.T. provided the ReaChR reagent and advice on its biophysical properties. H.K.I. and Y.J. performed the data analysis. H.K.I. and D.J.A. prepared the figures and wrote the paper.

Corresponding author

Correspondence to David J Anderson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1–4 and Supplementary Note (PDF 3086 kb)

Supplementary Software

Software to control LED and camera for behavioral experiments (TXT 17 kb)

Activation of Gr5a neurons with ReaChR

This movie shows representative PER behavior triggered by activation of Gr5a neurons with ReaChR. The first half of the movie shows activation with pulsing light-stimuli (100 msec pulse width, 1 Hz, 627 nm), and the last half of the movie shows activation with a continuous light-stimulus (627 nm). The white light appears on the right side of the movie is the light from the indicator IR LED (850 nm), which the flies cannot see. (MOV 1087 kb)

Activation of HB9 GAL4 neurons with ReaChR

This movie shows representative side-walking (first half of the movie) and paralysis (last half of the movie) triggered by activation of HB9-GAL4 neurons with ReaChR (continuous, 530 nm). (MOV 594 kb)

Activation of Crz GAL4 neurons with ReaChR

This movie shows representative ejaculation behavior triggered by activation of Crz-GAL4 neurons with ReaChR (continuous, 530 nm). Note that Crz-GAL4; UAS-ReaChR flies bend their abdomen and extrude their genitals from the abdomen. At the end of movie (around 14 sec) the fly ejaculates and stops bending it abdomen. Note that although the control fly on the right (empty-GAL4; UAS-ReaChR) shows abdominal bending several times, it is less frequent and not accompanied by genital extrusion or ejaculation. (MOV 1407 kb)

Activation of Fru GAL4 neurons with ReaChR

This movie shows representative wing extension (first half of the movie) and paralysis (last half of the movie) triggered by activation of Fru-GAL4 neurons with ReaChR (continuous, 530 nm). (MOV 637 kb)

Activation of P1 and pIP10 neurons with ReaChR

This movie shows representative wing extension behavior triggered by activation of P1 neurons (first half of the movie) and pIP10 neurons (last half of the movie) with ReaChR (continuous, 530 nm). (MOV 1139 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inagaki, H., Jung, Y., Hoopfer, E. et al. Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat Methods 11, 325–332 (2014). https://doi.org/10.1038/nmeth.2765

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2765

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing