Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Differential abundance analysis for microbial marker-gene surveys


We introduce a methodology to assess differential abundance in sparse high-throughput microbial marker-gene survey data. Our approach, implemented in the metagenomeSeq Bioconductor package, relies on a novel normalization technique and a statistical model that accounts for undersampling—a common feature of large-scale marker-gene studies. Using simulated data and several published microbiota data sets, we show that metagenomeSeq outperforms the tools currently used in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clustering analysis is improved substantially by CSS normalization.
Figure 2: Simulation results indicated that metagenomeSeq has greater sensitivity and specificity in a variety of settings.

Similar content being viewed by others


  1. Morgan, X.C. et al. Genome Biol. 13, R79 (2012).

    Article  CAS  Google Scholar 

  2. Ravel, J. et al. Proc. Natl. Acad. Sci. USA 108 (suppl. 1), 4680–4687 (2011).

    Article  CAS  Google Scholar 

  3. Qin, J. et al. Nature 490, 55–60 (2012).

    Article  CAS  Google Scholar 

  4. Harris, J.K. & Wagner, B.D. J. Allergy Clin. Immunol. 129, 441–442 (2012).

    Article  Google Scholar 

  5. Turnbaugh, P.J. et al. Nature 457, 480–484 (2009).

    Article  CAS  Google Scholar 

  6. Scher, J.U. et al. Arthritis Rheum. 64, 3083–3094 (2012).

    Article  Google Scholar 

  7. Caporaso, J.G. et al. Nat. Methods 7, 335–336 (2010).

    Article  CAS  Google Scholar 

  8. Lozupone, C. & Knight, R. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    Article  CAS  Google Scholar 

  9. Ghodsi, M., Liu, B. & Pop, M. BMC Bioinformatics 12, 271 (2011).

    Article  Google Scholar 

  10. Wang, Q., Garrity, G.M., Tiedje, J.M. & Cole, J.R. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    Article  CAS  Google Scholar 

  11. Rodriguez-Brito, B., Rohwer, F. & Edwards, R.A. BMC Bioinformatics 7, 162 (2006).

    Article  Google Scholar 

  12. White, J.R., Nagarajan, N. & Pop, M. PLoS Comput. Biol. 5, e1000352 (2009).

    Article  Google Scholar 

  13. Segata, N. et al. Genome Biol. 12, R60 (2011).

    Article  Google Scholar 

  14. Bullard, J.H., Purdom, E., Hansen, K.D. & Dudoit, S. BMC Bioinformatics 11, 94 (2010).

    Article  Google Scholar 

  15. Dillies, M.A. et al. Brief. Bioinform. 10.1093/bib/bbs046 (17 September 2012).

  16. Turnbaugh, P.J. et al. Sci. Transl. Med. 1, 6ra14 (2009).

    Article  Google Scholar 

  17. Anders, S. & Huber, W. Genome Biol. 11, R106 (2010).

    Article  CAS  Google Scholar 

  18. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. Bioinformatics 26, 139–140 (2010).

    Article  CAS  Google Scholar 

  19. White, J.R. et al. BMC Bioinformatics 11, 152 (2010).

    Article  Google Scholar 

  20. Friedman, J. & Alm, E.J. PLoS Comput. Biol. 8, e1002687 (2012).

    Article  CAS  Google Scholar 

  21. Faust, K. et al. PLoS Comput. Biol. 8, e1002606 (2012).

    Article  CAS  Google Scholar 

  22. The Human Microbiome Project Consortium. Nature 486, 215–221 (2012).

  23. Smyth, G.K. in Bioinformatics and Computational Biology Solutions using R and Bioconductor (eds. Gentleman, R., Carey, V., Huber, W., Irizarry, R. & Dudoit, S.) 397–420 (Springer, 2005).

  24. Langendijk-Genevaux, P.S., Grimm, W.D. & van der Hoeven, J.S. J. Clin. Periodontol. 28, 1151–1157 (2001).

    Article  CAS  Google Scholar 

  25. Segata, N. et al. Genome Biol. 13, R42 (2012).

    Article  CAS  Google Scholar 

  26. Paster, B.J. et al. J. Bacteriol. 183, 3770–3783 (2001).

    Article  CAS  Google Scholar 

  27. Colombo, A.P. et al. J. Periodontol. 80, 1421–1432 (2009).

    Article  CAS  Google Scholar 

  28. Langmead, B., Hansen, K.D. & Leek, J.T. Genome Biol. 11, R83 (2010).

    Article  Google Scholar 

  29. Charlson, E.S. et al. Am. J. Respir. Crit. Care Med. 184, 957–963 (2011).

    Article  Google Scholar 

  30. Frazee, A.C., Langmead, B. & Leek, J.T. BMC Bioinformatics 12, 449 (2011).

    Article  Google Scholar 

Download references


J.N.P. was supported by a US National Science Foundation Graduate Research Fellowship (award DGE0750616). J.N.P., O.C.S. and M.P. were supported in part by the Bill and Melinda Gates Foundation (award 42917 to O.C.S.). H.C.B. was supported in part by the US National Institutes of Health grant 5R01HG005220. We would like to thank B. Lindsay and L. Magder for discussion of the methods and C.M. Hill for help with clustering of OTUs.

Author information

Authors and Affiliations



J.N.P. and H.C.B. developed the algorithms and wrote the software. J.N.P. collected results. O.C.S. and M.P. contributed to discussions of the methods. J.N.P., H.C.B. and M.P. analyzed results. J.N.P., H.C.B. and M.P. wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Héctor Corrada Bravo or Mihai Pop.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15, Supplementary Tables 1 and 2 and Supplementary Note (PDF 5286 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paulson, J., Stine, O., Bravo, H. et al. Differential abundance analysis for microbial marker-gene surveys. Nat Methods 10, 1200–1202 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing