Abstract
We introduce a methodology to assess differential abundance in sparse high-throughput microbial marker-gene survey data. Our approach, implemented in the metagenomeSeq Bioconductor package, relies on a novel normalization technique and a statistical model that accounts for undersampling—a common feature of large-scale marker-gene studies. Using simulated data and several published microbiota data sets, we show that metagenomeSeq outperforms the tools currently used in this field.
This is a preview of subscription content
Access options
Subscribe to Journal
Get full journal access for 1 year
$119.00
only $9.92 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.


References
Morgan, X.C. et al. Genome Biol. 13, R79 (2012).
Ravel, J. et al. Proc. Natl. Acad. Sci. USA 108 (suppl. 1), 4680–4687 (2011).
Qin, J. et al. Nature 490, 55–60 (2012).
Harris, J.K. & Wagner, B.D. J. Allergy Clin. Immunol. 129, 441–442 (2012).
Turnbaugh, P.J. et al. Nature 457, 480–484 (2009).
Scher, J.U. et al. Arthritis Rheum. 64, 3083–3094 (2012).
Caporaso, J.G. et al. Nat. Methods 7, 335–336 (2010).
Lozupone, C. & Knight, R. Appl. Environ. Microbiol. 71, 8228–8235 (2005).
Ghodsi, M., Liu, B. & Pop, M. BMC Bioinformatics 12, 271 (2011).
Wang, Q., Garrity, G.M., Tiedje, J.M. & Cole, J.R. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
Rodriguez-Brito, B., Rohwer, F. & Edwards, R.A. BMC Bioinformatics 7, 162 (2006).
White, J.R., Nagarajan, N. & Pop, M. PLoS Comput. Biol. 5, e1000352 (2009).
Segata, N. et al. Genome Biol. 12, R60 (2011).
Bullard, J.H., Purdom, E., Hansen, K.D. & Dudoit, S. BMC Bioinformatics 11, 94 (2010).
Dillies, M.A. et al. Brief. Bioinform. 10.1093/bib/bbs046 (17 September 2012).
Turnbaugh, P.J. et al. Sci. Transl. Med. 1, 6ra14 (2009).
Anders, S. & Huber, W. Genome Biol. 11, R106 (2010).
Robinson, M.D., McCarthy, D.J. & Smyth, G.K. Bioinformatics 26, 139–140 (2010).
White, J.R. et al. BMC Bioinformatics 11, 152 (2010).
Friedman, J. & Alm, E.J. PLoS Comput. Biol. 8, e1002687 (2012).
Faust, K. et al. PLoS Comput. Biol. 8, e1002606 (2012).
The Human Microbiome Project Consortium. Nature 486, 215–221 (2012).
Smyth, G.K. in Bioinformatics and Computational Biology Solutions using R and Bioconductor (eds. Gentleman, R., Carey, V., Huber, W., Irizarry, R. & Dudoit, S.) 397–420 (Springer, 2005).
Langendijk-Genevaux, P.S., Grimm, W.D. & van der Hoeven, J.S. J. Clin. Periodontol. 28, 1151–1157 (2001).
Segata, N. et al. Genome Biol. 13, R42 (2012).
Paster, B.J. et al. J. Bacteriol. 183, 3770–3783 (2001).
Colombo, A.P. et al. J. Periodontol. 80, 1421–1432 (2009).
Langmead, B., Hansen, K.D. & Leek, J.T. Genome Biol. 11, R83 (2010).
Charlson, E.S. et al. Am. J. Respir. Crit. Care Med. 184, 957–963 (2011).
Frazee, A.C., Langmead, B. & Leek, J.T. BMC Bioinformatics 12, 449 (2011).
Acknowledgements
J.N.P. was supported by a US National Science Foundation Graduate Research Fellowship (award DGE0750616). J.N.P., O.C.S. and M.P. were supported in part by the Bill and Melinda Gates Foundation (award 42917 to O.C.S.). H.C.B. was supported in part by the US National Institutes of Health grant 5R01HG005220. We would like to thank B. Lindsay and L. Magder for discussion of the methods and C.M. Hill for help with clustering of OTUs.
Author information
Authors and Affiliations
Contributions
J.N.P. and H.C.B. developed the algorithms and wrote the software. J.N.P. collected results. O.C.S. and M.P. contributed to discussions of the methods. J.N.P., H.C.B. and M.P. analyzed results. J.N.P., H.C.B. and M.P. wrote the manuscript. All authors read and approved the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–15, Supplementary Tables 1 and 2 and Supplementary Note (PDF 5286 kb)
Source data
Rights and permissions
About this article
Cite this article
Paulson, J., Stine, O., Bravo, H. et al. Differential abundance analysis for microbial marker-gene surveys. Nat Methods 10, 1200–1202 (2013). https://doi.org/10.1038/nmeth.2658
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmeth.2658
Further reading
-
LANDMark: an ensemble approach to the supervised selection of biomarkers in high-throughput sequencing data
BMC Bioinformatics (2022)
-
A randomized double-blind cross-over trial to study the effects of resistant starch prebiotic in chronic kidney disease (ReSPECKD)
Trials (2022)
-
Altered gut microbiota composition with antibiotic treatment impairs functional recovery after traumatic peripheral nerve crush injury in mice: effects of probiotics with butyrate producing bacteria
BMC Research Notes (2022)
-
AGAMEMNON: an Accurate metaGenomics And MEtatranscriptoMics quaNtificatiON analysis suite
Genome Biology (2022)
-
Immunogenetic variation shapes the gut microbiome in a natural vertebrate population
Microbiome (2022)