Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Differential abundance analysis for microbial marker-gene surveys

Abstract

We introduce a methodology to assess differential abundance in sparse high-throughput microbial marker-gene survey data. Our approach, implemented in the metagenomeSeq Bioconductor package, relies on a novel normalization technique and a statistical model that accounts for undersampling—a common feature of large-scale marker-gene studies. Using simulated data and several published microbiota data sets, we show that metagenomeSeq outperforms the tools currently used in this field.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Clustering analysis is improved substantially by CSS normalization.
Figure 2: Simulation results indicated that metagenomeSeq has greater sensitivity and specificity in a variety of settings.

References

  1. Morgan, X.C. et al. Genome Biol. 13, R79 (2012).

    CAS  Article  Google Scholar 

  2. Ravel, J. et al. Proc. Natl. Acad. Sci. USA 108 (suppl. 1), 4680–4687 (2011).

    CAS  Article  Google Scholar 

  3. Qin, J. et al. Nature 490, 55–60 (2012).

    CAS  Article  Google Scholar 

  4. Harris, J.K. & Wagner, B.D. J. Allergy Clin. Immunol. 129, 441–442 (2012).

    Article  Google Scholar 

  5. Turnbaugh, P.J. et al. Nature 457, 480–484 (2009).

    CAS  Article  Google Scholar 

  6. Scher, J.U. et al. Arthritis Rheum. 64, 3083–3094 (2012).

    Article  Google Scholar 

  7. Caporaso, J.G. et al. Nat. Methods 7, 335–336 (2010).

    CAS  Article  Google Scholar 

  8. Lozupone, C. & Knight, R. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    CAS  Article  Google Scholar 

  9. Ghodsi, M., Liu, B. & Pop, M. BMC Bioinformatics 12, 271 (2011).

    Article  Google Scholar 

  10. Wang, Q., Garrity, G.M., Tiedje, J.M. & Cole, J.R. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS  Article  Google Scholar 

  11. Rodriguez-Brito, B., Rohwer, F. & Edwards, R.A. BMC Bioinformatics 7, 162 (2006).

    Article  Google Scholar 

  12. White, J.R., Nagarajan, N. & Pop, M. PLoS Comput. Biol. 5, e1000352 (2009).

    Article  Google Scholar 

  13. Segata, N. et al. Genome Biol. 12, R60 (2011).

    Article  Google Scholar 

  14. Bullard, J.H., Purdom, E., Hansen, K.D. & Dudoit, S. BMC Bioinformatics 11, 94 (2010).

    Article  Google Scholar 

  15. Dillies, M.A. et al. Brief. Bioinform. 10.1093/bib/bbs046 (17 September 2012).

  16. Turnbaugh, P.J. et al. Sci. Transl. Med. 1, 6ra14 (2009).

    Article  Google Scholar 

  17. Anders, S. & Huber, W. Genome Biol. 11, R106 (2010).

    CAS  Article  Google Scholar 

  18. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. Bioinformatics 26, 139–140 (2010).

    CAS  Article  Google Scholar 

  19. White, J.R. et al. BMC Bioinformatics 11, 152 (2010).

    Article  Google Scholar 

  20. Friedman, J. & Alm, E.J. PLoS Comput. Biol. 8, e1002687 (2012).

    CAS  Article  Google Scholar 

  21. Faust, K. et al. PLoS Comput. Biol. 8, e1002606 (2012).

    CAS  Article  Google Scholar 

  22. The Human Microbiome Project Consortium. Nature 486, 215–221 (2012).

  23. Smyth, G.K. in Bioinformatics and Computational Biology Solutions using R and Bioconductor (eds. Gentleman, R., Carey, V., Huber, W., Irizarry, R. & Dudoit, S.) 397–420 (Springer, 2005).

  24. Langendijk-Genevaux, P.S., Grimm, W.D. & van der Hoeven, J.S. J. Clin. Periodontol. 28, 1151–1157 (2001).

    CAS  Article  Google Scholar 

  25. Segata, N. et al. Genome Biol. 13, R42 (2012).

    CAS  Article  Google Scholar 

  26. Paster, B.J. et al. J. Bacteriol. 183, 3770–3783 (2001).

    CAS  Article  Google Scholar 

  27. Colombo, A.P. et al. J. Periodontol. 80, 1421–1432 (2009).

    CAS  Article  Google Scholar 

  28. Langmead, B., Hansen, K.D. & Leek, J.T. Genome Biol. 11, R83 (2010).

    Article  Google Scholar 

  29. Charlson, E.S. et al. Am. J. Respir. Crit. Care Med. 184, 957–963 (2011).

    Article  Google Scholar 

  30. Frazee, A.C., Langmead, B. & Leek, J.T. BMC Bioinformatics 12, 449 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

J.N.P. was supported by a US National Science Foundation Graduate Research Fellowship (award DGE0750616). J.N.P., O.C.S. and M.P. were supported in part by the Bill and Melinda Gates Foundation (award 42917 to O.C.S.). H.C.B. was supported in part by the US National Institutes of Health grant 5R01HG005220. We would like to thank B. Lindsay and L. Magder for discussion of the methods and C.M. Hill for help with clustering of OTUs.

Author information

Authors and Affiliations

Authors

Contributions

J.N.P. and H.C.B. developed the algorithms and wrote the software. J.N.P. collected results. O.C.S. and M.P. contributed to discussions of the methods. J.N.P., H.C.B. and M.P. analyzed results. J.N.P., H.C.B. and M.P. wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Héctor Corrada Bravo or Mihai Pop.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15, Supplementary Tables 1 and 2 and Supplementary Note (PDF 5286 kb)

Source data

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Paulson, J., Stine, O., Bravo, H. et al. Differential abundance analysis for microbial marker-gene surveys. Nat Methods 10, 1200–1202 (2013). https://doi.org/10.1038/nmeth.2658

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2658

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing