Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Exploiting tertiary structure through local folds for crystallographic phasing

A Corrigendum to this article was published on 27 June 2014

This article has been updated

Abstract

We describe an algorithm for phasing protein crystal X-ray diffraction data that identifies, retrieves, refines and exploits general tertiary structural information from small fragments available in the Protein Data Bank. The algorithm successfully phased, through unspecific molecular replacement combined with density modification, all-helical, mixed alpha-beta, and all-beta protein structures. The method is available as a software implementation: Borges.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Characteristic Cα-O vectors (CVs) used in Borges to handle secondary structure and local fold geometry.
Figure 2: Overall occurrence of model fragments and their role in phasing an all-beta and a previously unknown structure.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Swiss-Prot

Change history

  • 05 May 2014

    In the version of this article initially published, the authors did not acknowledge all of the people involved in the generation of the crystallographic data set of AF1503 from A. fulgidus. These diffraction data were originated by M. Hulko, A. Ursinus, K. Bär, J. Martin, K.Z. and A.N. Lupas at the Max Planck Institute for Developmental Biology, Tübingen. M. Hulko, A. Ursinus, K. Bär, J. Martin and A.N. Lupas have kindly given their retroactive permission to use the data. Their report on the AF1503 structure was published in the Journal of Structural Biology (doi:10.1016/j.jsb.2014.02.008) and PDB 4CQ4. The error has been corrected in the HTML and PDF versions of the article.

References

  1. 1

    Bernstein, F.C. et al. J. Mol. Biol. 112, 535–542 (1977).

    CAS  Article  Google Scholar 

  2. 2

    Qian, B. et al. Nature 450, 259–264 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Huber, R. Acta Crystallogr. 19, 353–356 (1965).

    CAS  Article  Google Scholar 

  4. 4

    Rossmann, M.G. The Molecular Replacement Method (Gordon and Breach, 1972).

  5. 5

    DiMaio, F. et al. Nature 473, 540–543 (2011).

    CAS  Article  Google Scholar 

  6. 6

    Rodríguez, D.D. et al. Nat. Methods 6, 651–653 (2009).

    Article  Google Scholar 

  7. 7

    McCoy, A.J. et al. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Sheldrick, G.M. Acta Crystallogr. D66, 479–485 (2010).

    Google Scholar 

  9. 9

    Tannenbaum, T., Wright, D., Miller, K. & Livny, M. in Beowulf Cluster Computing with Linux (ed. Sterling, T.) Ch. 14, 307–350 (The MIT Press, 2002).

  10. 10

    Burla, M.C., Carrozzini, B., Cascarano, G.L., Giacovazzo, C. & Polidori, G. J. Appl. Crystallogr. 44, 1143–1151 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Miller, R. et al. Science 259, 1430–1433 (1993).

    CAS  Article  Google Scholar 

  12. 12

    Joosten, R.P. et al. Nucleic Acids Res. 39, D411–D419 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Oldfield, T.J. Acta Crystallogr. D57, 1421–1427 (2001).

    CAS  Google Scholar 

  14. 14

    Cowtan, K. Acta Crystallogr. D68, 328–335 (2012).

    Google Scholar 

  15. 15

    Nicholls, R.A., Long, F. & Murshudov, G.N. Acta Crystallogr. D Biol. Crystallogr. 68, 404–417 (2012).

    CAS  Article  Google Scholar 

  16. 16

    Linder, J.U. & Schultz, J.E. Methods Enzymol. 471, 115–123 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Brünger, A.T. Methods Enzymol. 276, 558–580 (1997).

    Article  Google Scholar 

  18. 18

    Grosse-Kunstleve, R.W. & Adams, P.D. Acta Crystallogr. D57, 1390–1396 (2001).

    CAS  Google Scholar 

  19. 19

    Sampietro, J. et al. Mol. Cell 24, 293–300 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Hopcroft, J. & Tarjan, R. Commun. ACM 16, 372–378 (1973).

    Article  Google Scholar 

  21. 21

    Kabsch, W. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministerio de Ciencia e Innovación-Ministerio de Economia y Competitividad, Centro de Desarrollo Tecnológico Industrial and Consejo Superior de Investigaciones Científicas (grants BIO2009-10576; IDC-2010-1173; BFU2012-35367; BFU2012-32847; predoctoral grants to D.D.R., I.D.M. and I.M.d.I.; JdC to K.M.; RyC to R.M.B.); Generalitat de Catalunya (2009SGR-1036); VW-Stiftung Niedersachsenprofessur to G.M.S. We also acknowledge beam time on the Swiss Light Source beamline X10SA and computing time at the FCSCL. We thank M. Hulko, A. Ursinus, K. Bär, J. Martin and A.N. Lupas at the Max Planck Institute for Developmental Biology, Tübingen, for permission to use the diffraction data of AF1503 from A. fulgidus.

Author information

Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to Isabel Usón.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Tables 1 and 2, Supplementary Results and Supplementary Notes 1 and 2 (PDF 6443 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sammito, M., Millán, C., Rodríguez, D. et al. Exploiting tertiary structure through local folds for crystallographic phasing. Nat Methods 10, 1099–1101 (2013). https://doi.org/10.1038/nmeth.2644

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing