Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Inducible control of gene expression with destabilized Cre


Acute manipulation of gene and protein function in the brain is essential for understanding the mechanisms of nervous system development, plasticity and information processing. Here we describe a technique based on a destabilized Cre recombinase (DD-Cre) whose activity is controlled by the antibiotic trimethoprim (TMP). We show that DD-Cre triggers rapid TMP-dependent recombination of loxP-flanked ('floxed') alleles in mouse neurons in vivo and validate the use of this system for neurobehavioral research.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: TMP-dependent loxP recombination in the brain of DD-Cre mice.
Figure 2: TMP-induced synaptic silencing in the brain of DD-Cre/TeNT mice.
Figure 3: DD-Cre/TeNT mice exhibit TMP-dependent loss of recognition and spatial memory.


  1. 1

    Danielian, P.S., Muccino, D., Rowitch, D.H., Michael, S.K. & McMahon, A.P. Curr. Biol. 8, 1323–1326 (1998).

    CAS  Article  Google Scholar 

  2. 2

    Metzger, D. & Chambon, P. Methods 24, 71–80 (2001).

    CAS  Article  Google Scholar 

  3. 3

    Taniguchi, H. et al. Neuron 71, 995–1013 (2011).

    CAS  Article  Google Scholar 

  4. 4

    Mansuy, I.M. et al. Neuron 21, 257–265 (1998).

    CAS  Article  Google Scholar 

  5. 5

    Chen, D., Wu, C.F., Shi, B. & Xu, Y.M. Pharmacol. Biochem. Behav. 71, 269–276 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Roshangar, L., Rad, J.S. & Afsordeh, K. J. Obstet. Gynaecol. Res. 36, 224–231 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Nakashiba, T., Young, J.Z., McHugh, T.J., Buhl, D.L. & Tonegawa, S. Science 319, 1260–1264 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Liu, X. et al. Nature 484, 381–385 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Fenno, L., Yizhar, O. & Deisseroth, K. Annu. Rev. Neurosci. 34, 389–412 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Dong, S., Rogan, S.C. & Roth, B.L. Nat. Protoc. 5, 561–573 (2010).

    CAS  Article  Google Scholar 

  11. 11

    Szobota, S. et al. Neuron 54, 535–545 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Karpova, A.Y., Tervo, D.G., Gray, N.W. & Svoboda, K. Neuron 48, 727–735 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Wehr, M. et al. J. Neurophysiol. 102, 2554–2562 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Iwamoto, M., Bjorklund, T., Lundberg, C., Kirik, D. & Wandless, T.J. Chem. Biol. 17, 981–988 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Banaszynski, L.A., Chen, L.C., Maynard-Smith, L.A., Ooi, A.G. & Wandless, T.J. Cell 126, 995–1004 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Tu, Y.H., Allen, L.V. Jr., Fiorica, V.M. & Albers, D.D. J. Pharm. Sci. 78, 556–560 (1989).

    CAS  Article  Google Scholar 

  17. 17

    Sando, R. III et al. Cell 151, 821–834 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Zhang, Y. et al. Neuron 60, 84–96 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Turlo, K.A., Gallaher, S.D., Vora, R., Laski, F.A. & Iruela-Arispe, M.L. Genetics 186, 959–967 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Lantinga-van Leeuwen, I.S. et al. Genesis 44, 225–232 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Maximov, A., Tang, J., Yang, X., Pang, Z.P. & Sudhof, T.C. Science 323, 516–521 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Madisen, L. et al. Nat. Neurosci. 13, 133–140 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Saura, C.A. et al. Neuron 42, 23–36 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Benice, T.S., Rizk, A., Kohama, S., Pfankuch, T. & Raber, J. Neuroscience 137, 413–423 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Barnes, C.A. J. Comp. Physiol. Psychol. 93, 74–104 (1979).

    CAS  Article  Google Scholar 

  26. 26

    Bach, M.E., Hawkins, R.D., Osman, M., Kandel, E.R. & Mayford, M. Cell 81, 905–915 (1995).

    CAS  Article  Google Scholar 

Download references


We thank U. Mueller (The Scripps Research Institute (TSRI)), L. Stowers (TSRI), F. Polleux (TSRI) and D. Anderson (California Institute of Technology) for advice and discussion; T.C. Südhof (Stanford), M. Goulding (Salk Institute), U. Mueller (TSRI) and M. Shimojo (TSRI) for providing mouse strains, antibodies and expression vectors; A. Roberts, S. Kupriyanov and TSRI mouse behavioral and transgenic cores for expert technical assistance; and members of the laboratories of L. Stowers and U. Mueller for help with experiments. This study was supported in part by a US National Institutes of Health R01 grant MH085776 (A.M.), the Novartis Advanced Discovery Institute (A.M.), The Baxter Foundation (A.M.), a National Institutes of Health Predoctoral Research Service Award (R.S.) and a Helen Dorris Postdoctoral Fellowship (S.P.).

Author information




A.M. and R.S. conceived hypotheses and designed the experiments. R.S. generated expression constructs and characterized mutant mice. M.M. and K.B. examined TMP pharmacokinetics in the brain. K.B., S.P. and N.T.-R. contributed to imaging and behavioral analyses. T.J.W. provided DD tags and assisted with interpretation of results. A.M. wrote the manuscript.

Corresponding author

Correspondence to Anton Maximov.

Ethics declarations

Competing interests

A.M., R.S., T.J.W. and M.M. anticipate filing a provisional patent for use of DD-Cre in genetically modified animals.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 2263 kb)

Supplementary Table 1

Background and TMP-dependent recombination in the brain of DD-Cre/Ai9 mice (XLSX 50 kb)

Supplementary Table 2

ZIF268/Egr1 fluorescence intensity/neuron, Syb2-positive puncta density/mm2 and EPSP amplitude (XLSX 13 kb)

Supplementary Table 3

Locomotor activity (XLSX 75 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sando, R., Baumgaertel, K., Pieraut, S. et al. Inducible control of gene expression with destabilized Cre. Nat Methods 10, 1085–1088 (2013).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing