Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Inducible control of gene expression with destabilized Cre

Abstract

Acute manipulation of gene and protein function in the brain is essential for understanding the mechanisms of nervous system development, plasticity and information processing. Here we describe a technique based on a destabilized Cre recombinase (DD-Cre) whose activity is controlled by the antibiotic trimethoprim (TMP). We show that DD-Cre triggers rapid TMP-dependent recombination of loxP-flanked ('floxed') alleles in mouse neurons in vivo and validate the use of this system for neurobehavioral research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TMP-dependent loxP recombination in the brain of DD-Cre mice.
Figure 2: TMP-induced synaptic silencing in the brain of DD-Cre/TeNT mice.
Figure 3: DD-Cre/TeNT mice exhibit TMP-dependent loss of recognition and spatial memory.

Similar content being viewed by others

References

  1. Danielian, P.S., Muccino, D., Rowitch, D.H., Michael, S.K. & McMahon, A.P. Curr. Biol. 8, 1323–1326 (1998).

    Article  CAS  Google Scholar 

  2. Metzger, D. & Chambon, P. Methods 24, 71–80 (2001).

    Article  CAS  Google Scholar 

  3. Taniguchi, H. et al. Neuron 71, 995–1013 (2011).

    Article  CAS  Google Scholar 

  4. Mansuy, I.M. et al. Neuron 21, 257–265 (1998).

    Article  CAS  Google Scholar 

  5. Chen, D., Wu, C.F., Shi, B. & Xu, Y.M. Pharmacol. Biochem. Behav. 71, 269–276 (2002).

    Article  CAS  Google Scholar 

  6. Roshangar, L., Rad, J.S. & Afsordeh, K. J. Obstet. Gynaecol. Res. 36, 224–231 (2010).

    Article  CAS  Google Scholar 

  7. Nakashiba, T., Young, J.Z., McHugh, T.J., Buhl, D.L. & Tonegawa, S. Science 319, 1260–1264 (2008).

    Article  CAS  Google Scholar 

  8. Liu, X. et al. Nature 484, 381–385 (2012).

    Article  CAS  Google Scholar 

  9. Fenno, L., Yizhar, O. & Deisseroth, K. Annu. Rev. Neurosci. 34, 389–412 (2011).

    Article  CAS  Google Scholar 

  10. Dong, S., Rogan, S.C. & Roth, B.L. Nat. Protoc. 5, 561–573 (2010).

    Article  CAS  Google Scholar 

  11. Szobota, S. et al. Neuron 54, 535–545 (2007).

    Article  CAS  Google Scholar 

  12. Karpova, A.Y., Tervo, D.G., Gray, N.W. & Svoboda, K. Neuron 48, 727–735 (2005).

    Article  CAS  Google Scholar 

  13. Wehr, M. et al. J. Neurophysiol. 102, 2554–2562 (2009).

    Article  CAS  Google Scholar 

  14. Iwamoto, M., Bjorklund, T., Lundberg, C., Kirik, D. & Wandless, T.J. Chem. Biol. 17, 981–988 (2010).

    Article  CAS  Google Scholar 

  15. Banaszynski, L.A., Chen, L.C., Maynard-Smith, L.A., Ooi, A.G. & Wandless, T.J. Cell 126, 995–1004 (2006).

    Article  CAS  Google Scholar 

  16. Tu, Y.H., Allen, L.V. Jr., Fiorica, V.M. & Albers, D.D. J. Pharm. Sci. 78, 556–560 (1989).

    Article  CAS  Google Scholar 

  17. Sando, R. III et al. Cell 151, 821–834 (2012).

    Article  CAS  Google Scholar 

  18. Zhang, Y. et al. Neuron 60, 84–96 (2008).

    Article  CAS  Google Scholar 

  19. Turlo, K.A., Gallaher, S.D., Vora, R., Laski, F.A. & Iruela-Arispe, M.L. Genetics 186, 959–967 (2010).

    Article  CAS  Google Scholar 

  20. Lantinga-van Leeuwen, I.S. et al. Genesis 44, 225–232 (2006).

    Article  CAS  Google Scholar 

  21. Maximov, A., Tang, J., Yang, X., Pang, Z.P. & Sudhof, T.C. Science 323, 516–521 (2009).

    Article  CAS  Google Scholar 

  22. Madisen, L. et al. Nat. Neurosci. 13, 133–140 (2010).

    Article  CAS  Google Scholar 

  23. Saura, C.A. et al. Neuron 42, 23–36 (2004).

    Article  CAS  Google Scholar 

  24. Benice, T.S., Rizk, A., Kohama, S., Pfankuch, T. & Raber, J. Neuroscience 137, 413–423 (2006).

    Article  CAS  Google Scholar 

  25. Barnes, C.A. J. Comp. Physiol. Psychol. 93, 74–104 (1979).

    Article  CAS  Google Scholar 

  26. Bach, M.E., Hawkins, R.D., Osman, M., Kandel, E.R. & Mayford, M. Cell 81, 905–915 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank U. Mueller (The Scripps Research Institute (TSRI)), L. Stowers (TSRI), F. Polleux (TSRI) and D. Anderson (California Institute of Technology) for advice and discussion; T.C. Südhof (Stanford), M. Goulding (Salk Institute), U. Mueller (TSRI) and M. Shimojo (TSRI) for providing mouse strains, antibodies and expression vectors; A. Roberts, S. Kupriyanov and TSRI mouse behavioral and transgenic cores for expert technical assistance; and members of the laboratories of L. Stowers and U. Mueller for help with experiments. This study was supported in part by a US National Institutes of Health R01 grant MH085776 (A.M.), the Novartis Advanced Discovery Institute (A.M.), The Baxter Foundation (A.M.), a National Institutes of Health Predoctoral Research Service Award (R.S.) and a Helen Dorris Postdoctoral Fellowship (S.P.).

Author information

Authors and Affiliations

Authors

Contributions

A.M. and R.S. conceived hypotheses and designed the experiments. R.S. generated expression constructs and characterized mutant mice. M.M. and K.B. examined TMP pharmacokinetics in the brain. K.B., S.P. and N.T.-R. contributed to imaging and behavioral analyses. T.J.W. provided DD tags and assisted with interpretation of results. A.M. wrote the manuscript.

Corresponding author

Correspondence to Anton Maximov.

Ethics declarations

Competing interests

A.M., R.S., T.J.W. and M.M. anticipate filing a provisional patent for use of DD-Cre in genetically modified animals.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 2263 kb)

Supplementary Table 1

Background and TMP-dependent recombination in the brain of DD-Cre/Ai9 mice (XLSX 50 kb)

Supplementary Table 2

ZIF268/Egr1 fluorescence intensity/neuron, Syb2-positive puncta density/mm2 and EPSP amplitude (XLSX 13 kb)

Supplementary Table 3

Locomotor activity (XLSX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sando, R., Baumgaertel, K., Pieraut, S. et al. Inducible control of gene expression with destabilized Cre. Nat Methods 10, 1085–1088 (2013). https://doi.org/10.1038/nmeth.2640

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2640

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing