Abstract
Acute manipulation of gene and protein function in the brain is essential for understanding the mechanisms of nervous system development, plasticity and information processing. Here we describe a technique based on a destabilized Cre recombinase (DD-Cre) whose activity is controlled by the antibiotic trimethoprim (TMP). We show that DD-Cre triggers rapid TMP-dependent recombination of loxP-flanked ('floxed') alleles in mouse neurons in vivo and validate the use of this system for neurobehavioral research.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Danielian, P.S., Muccino, D., Rowitch, D.H., Michael, S.K. & McMahon, A.P. Curr. Biol. 8, 1323–1326 (1998).
Metzger, D. & Chambon, P. Methods 24, 71–80 (2001).
Taniguchi, H. et al. Neuron 71, 995–1013 (2011).
Mansuy, I.M. et al. Neuron 21, 257–265 (1998).
Chen, D., Wu, C.F., Shi, B. & Xu, Y.M. Pharmacol. Biochem. Behav. 71, 269–276 (2002).
Roshangar, L., Rad, J.S. & Afsordeh, K. J. Obstet. Gynaecol. Res. 36, 224–231 (2010).
Nakashiba, T., Young, J.Z., McHugh, T.J., Buhl, D.L. & Tonegawa, S. Science 319, 1260–1264 (2008).
Liu, X. et al. Nature 484, 381–385 (2012).
Fenno, L., Yizhar, O. & Deisseroth, K. Annu. Rev. Neurosci. 34, 389–412 (2011).
Dong, S., Rogan, S.C. & Roth, B.L. Nat. Protoc. 5, 561–573 (2010).
Szobota, S. et al. Neuron 54, 535–545 (2007).
Karpova, A.Y., Tervo, D.G., Gray, N.W. & Svoboda, K. Neuron 48, 727–735 (2005).
Wehr, M. et al. J. Neurophysiol. 102, 2554–2562 (2009).
Iwamoto, M., Bjorklund, T., Lundberg, C., Kirik, D. & Wandless, T.J. Chem. Biol. 17, 981–988 (2010).
Banaszynski, L.A., Chen, L.C., Maynard-Smith, L.A., Ooi, A.G. & Wandless, T.J. Cell 126, 995–1004 (2006).
Tu, Y.H., Allen, L.V. Jr., Fiorica, V.M. & Albers, D.D. J. Pharm. Sci. 78, 556–560 (1989).
Sando, R. III et al. Cell 151, 821–834 (2012).
Zhang, Y. et al. Neuron 60, 84–96 (2008).
Turlo, K.A., Gallaher, S.D., Vora, R., Laski, F.A. & Iruela-Arispe, M.L. Genetics 186, 959–967 (2010).
Lantinga-van Leeuwen, I.S. et al. Genesis 44, 225–232 (2006).
Maximov, A., Tang, J., Yang, X., Pang, Z.P. & Sudhof, T.C. Science 323, 516–521 (2009).
Madisen, L. et al. Nat. Neurosci. 13, 133–140 (2010).
Saura, C.A. et al. Neuron 42, 23–36 (2004).
Benice, T.S., Rizk, A., Kohama, S., Pfankuch, T. & Raber, J. Neuroscience 137, 413–423 (2006).
Barnes, C.A. J. Comp. Physiol. Psychol. 93, 74–104 (1979).
Bach, M.E., Hawkins, R.D., Osman, M., Kandel, E.R. & Mayford, M. Cell 81, 905–915 (1995).
Acknowledgements
We thank U. Mueller (The Scripps Research Institute (TSRI)), L. Stowers (TSRI), F. Polleux (TSRI) and D. Anderson (California Institute of Technology) for advice and discussion; T.C. Südhof (Stanford), M. Goulding (Salk Institute), U. Mueller (TSRI) and M. Shimojo (TSRI) for providing mouse strains, antibodies and expression vectors; A. Roberts, S. Kupriyanov and TSRI mouse behavioral and transgenic cores for expert technical assistance; and members of the laboratories of L. Stowers and U. Mueller for help with experiments. This study was supported in part by a US National Institutes of Health R01 grant MH085776 (A.M.), the Novartis Advanced Discovery Institute (A.M.), The Baxter Foundation (A.M.), a National Institutes of Health Predoctoral Research Service Award (R.S.) and a Helen Dorris Postdoctoral Fellowship (S.P.).
Author information
Authors and Affiliations
Contributions
A.M. and R.S. conceived hypotheses and designed the experiments. R.S. generated expression constructs and characterized mutant mice. M.M. and K.B. examined TMP pharmacokinetics in the brain. K.B., S.P. and N.T.-R. contributed to imaging and behavioral analyses. T.J.W. provided DD tags and assisted with interpretation of results. A.M. wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
A.M., R.S., T.J.W. and M.M. anticipate filing a provisional patent for use of DD-Cre in genetically modified animals.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–9 (PDF 2263 kb)
Supplementary Table 1
Background and TMP-dependent recombination in the brain of DD-Cre/Ai9 mice (XLSX 50 kb)
Supplementary Table 2
ZIF268/Egr1 fluorescence intensity/neuron, Syb2-positive puncta density/mm2 and EPSP amplitude (XLSX 13 kb)
Supplementary Table 3
Locomotor activity (XLSX 75 kb)
Rights and permissions
About this article
Cite this article
Sando, R., Baumgaertel, K., Pieraut, S. et al. Inducible control of gene expression with destabilized Cre. Nat Methods 10, 1085–1088 (2013). https://doi.org/10.1038/nmeth.2640
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmeth.2640
This article is cited by
-
Genetic targeting of adult Renshaw cells using a Calbindin 1 destabilized Cre allele for intersection with Parvalbumin or Engrailed1
Scientific Reports (2021)
-
Distinct subtypes of proprioceptive dorsal root ganglion neurons regulate adaptive proprioception in mice
Nature Communications (2021)
-
A non-invasive far-red light-induced split-Cre recombinase system for controllable genome engineering in mice
Nature Communications (2020)
-
Noninvasive optical activation of Flp recombinase for genetic manipulation in deep mouse brain regions
Nature Communications (2019)
-
High-performance chemical- and light-inducible recombinases in mammalian cells and mice
Nature Communications (2019)