Brief Communication | Published:

Inducible control of gene expression with destabilized Cre

Nature Methods volume 10, pages 10851088 (2013) | Download Citation

Abstract

Acute manipulation of gene and protein function in the brain is essential for understanding the mechanisms of nervous system development, plasticity and information processing. Here we describe a technique based on a destabilized Cre recombinase (DD-Cre) whose activity is controlled by the antibiotic trimethoprim (TMP). We show that DD-Cre triggers rapid TMP-dependent recombination of loxP-flanked ('floxed') alleles in mouse neurons in vivo and validate the use of this system for neurobehavioral research.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , , & Curr. Biol. 8, 1323–1326 (1998).

  2. 2.

    & Methods 24, 71–80 (2001).

  3. 3.

    et al. Neuron 71, 995–1013 (2011).

  4. 4.

    et al. Neuron 21, 257–265 (1998).

  5. 5.

    , , & Pharmacol. Biochem. Behav. 71, 269–276 (2002).

  6. 6.

    , & J. Obstet. Gynaecol. Res. 36, 224–231 (2010).

  7. 7.

    , , , & Science 319, 1260–1264 (2008).

  8. 8.

    et al. Nature 484, 381–385 (2012).

  9. 9.

    , & Annu. Rev. Neurosci. 34, 389–412 (2011).

  10. 10.

    , & Nat. Protoc. 5, 561–573 (2010).

  11. 11.

    et al. Neuron 54, 535–545 (2007).

  12. 12.

    , , & Neuron 48, 727–735 (2005).

  13. 13.

    et al. J. Neurophysiol. 102, 2554–2562 (2009).

  14. 14.

    , , , & Chem. Biol. 17, 981–988 (2010).

  15. 15.

    , , , & Cell 126, 995–1004 (2006).

  16. 16.

    , , & J. Pharm. Sci. 78, 556–560 (1989).

  17. 17.

    et al. Cell 151, 821–834 (2012).

  18. 18.

    et al. Neuron 60, 84–96 (2008).

  19. 19.

    , , , & Genetics 186, 959–967 (2010).

  20. 20.

    et al. Genesis 44, 225–232 (2006).

  21. 21.

    , , , & Science 323, 516–521 (2009).

  22. 22.

    et al. Nat. Neurosci. 13, 133–140 (2010).

  23. 23.

    et al. Neuron 42, 23–36 (2004).

  24. 24.

    , , , & Neuroscience 137, 413–423 (2006).

  25. 25.

    J. Comp. Physiol. Psychol. 93, 74–104 (1979).

  26. 26.

    , , , & Cell 81, 905–915 (1995).

Download references

Acknowledgements

We thank U. Mueller (The Scripps Research Institute (TSRI)), L. Stowers (TSRI), F. Polleux (TSRI) and D. Anderson (California Institute of Technology) for advice and discussion; T.C. Südhof (Stanford), M. Goulding (Salk Institute), U. Mueller (TSRI) and M. Shimojo (TSRI) for providing mouse strains, antibodies and expression vectors; A. Roberts, S. Kupriyanov and TSRI mouse behavioral and transgenic cores for expert technical assistance; and members of the laboratories of L. Stowers and U. Mueller for help with experiments. This study was supported in part by a US National Institutes of Health R01 grant MH085776 (A.M.), the Novartis Advanced Discovery Institute (A.M.), The Baxter Foundation (A.M.), a National Institutes of Health Predoctoral Research Service Award (R.S.) and a Helen Dorris Postdoctoral Fellowship (S.P.).

Author information

Affiliations

  1. Department of Molecular and Cellular Neuroscience, The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, California, USA.

    • Richard Sando III
    • , Karsten Baumgaertel
    • , Simon Pieraut
    • , Nina Torabi-Rander
    • , Mark Mayford
    •  & Anton Maximov
  2. The Kellogg School of Science and Technology, The Scripps Research Institute, La Jolla, California, USA.

    • Richard Sando III
  3. Department of Chemical and Systems Biology, Stanford University, Stanford, California, USA.

    • Thomas J Wandless

Authors

  1. Search for Richard Sando in:

  2. Search for Karsten Baumgaertel in:

  3. Search for Simon Pieraut in:

  4. Search for Nina Torabi-Rander in:

  5. Search for Thomas J Wandless in:

  6. Search for Mark Mayford in:

  7. Search for Anton Maximov in:

Contributions

A.M. and R.S. conceived hypotheses and designed the experiments. R.S. generated expression constructs and characterized mutant mice. M.M. and K.B. examined TMP pharmacokinetics in the brain. K.B., S.P. and N.T.-R. contributed to imaging and behavioral analyses. T.J.W. provided DD tags and assisted with interpretation of results. A.M. wrote the manuscript.

Competing interests

A.M., R.S., T.J.W. and M.M. anticipate filing a provisional patent for use of DD-Cre in genetically modified animals.

Corresponding author

Correspondence to Anton Maximov.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1–9

Excel files

  1. 1.

    Supplementary Table 1

    Background and TMP-dependent recombination in the brain of DD-Cre/Ai9 mice

  2. 2.

    Supplementary Table 2

    ZIF268/Egr1 fluorescence intensity/neuron, Syb2-positive puncta density/mm2 and EPSP amplitude

  3. 3.

    Supplementary Table 3

    Locomotor activity

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmeth.2640

Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing