Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

RNA-guided gene activation by CRISPR-Cas9–based transcription factors


Technologies for engineering synthetic transcription factors have enabled many advances in medical and scientific research. In contrast to existing methods based on engineering of DNA-binding proteins, we created a Cas9-based transactivator that is targeted to DNA sequences by guide RNA molecules. Coexpression of this transactivator and combinations of guide RNAs in human cells induced specific expression of endogenous target genes, demonstrating a simple and versatile approach for RNA-guided gene activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA-guided activation of the human IL1RN gene by dCas9-VP64.
Figure 2: RNA-guided activation of human genes.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus


  1. Rebar, E.J. et al. Nat. Med. 8, 1427–1432 (2002).

    Article  CAS  Google Scholar 

  2. Graslund, T., Li, X., Magnenat, L., Popkov, M. & Barbas, C.F. III . J. Biol. Chem. 280, 3707–3714 (2005).

    Article  Google Scholar 

  3. Beltran, A. et al. Oncogene 26, 2791–2798 (2007).

    Article  CAS  Google Scholar 

  4. Bartsevich, V.V., Miller, J.C., Case, C.C. & Pabo, C.O. Stem Cells 21, 632–637 (2003).

    Article  CAS  Google Scholar 

  5. Bultmann, S. et al. Nucleic Acids Res. 40, 5368–5377 (2012).

    Article  CAS  Google Scholar 

  6. Blancafort, P., Magnenat, L. & Barbas, C.F. III . Nat. Biotechnol. 21, 269–274 (2003).

    Article  CAS  Google Scholar 

  7. Park, K.S. et al. Nat. Biotechnol. 21, 1208–1214 (2003).

    Article  CAS  Google Scholar 

  8. Lohmueller, J.J., Armel, T.Z. & Silver, P.A. Nucleic Acids Res. 40, 5180–5187 (2012).

    Article  CAS  Google Scholar 

  9. Li, Y., Moore, R., Guinn, M. & Bleris, L. Scientific Rep. 2, 897 (2012).

    Article  Google Scholar 

  10. Beerli, R.R., Dreier, B. & Barbas, C.F. III. Proc. Natl. Acad. Sci. USA 97, 1495–1500 (2000).

    Article  CAS  Google Scholar 

  11. Garg, A., Lohmueller, J.J., Silver, P.A. & Armel, T.Z. Nucleic Acids Res. 40, 7584–7595 (2012).

    Article  CAS  Google Scholar 

  12. Beerli, R.R. & Barbas, C.F. III . Nat. Biotechnol. 20, 135–141 (2002).

    Article  CAS  Google Scholar 

  13. Zhang, F. et al. Nat. Biotechnol. 29, 149–153 (2011).

    Article  Google Scholar 

  14. Miller, J.C. et al. Nat. Biotechnol. 29, 143–148 (2011).

    Article  CAS  Google Scholar 

  15. Jinek, M. et al. Science 337, 816–821 (2012).

    Article  CAS  Google Scholar 

  16. Cong, L. et al. Science 339, 819–823 (2013).

    Article  CAS  Google Scholar 

  17. Mali, P. et al. Science 339, 823–826 (2013).

    Article  CAS  Google Scholar 

  18. Cho, S.W., Kim, S., Kim, J.M. & Kim, J.S. Nat. Biotechnol. 31, 230–232 (2013).

    Article  CAS  Google Scholar 

  19. Jinek, M. et al. eLife 2, e00471 (2013).

    Article  Google Scholar 

  20. Qi, L.S. et al. Cell 152, 1173–1183 (2013).

    Article  CAS  Google Scholar 

  21. Gilbert, L.A. et al. Cell doi:10.1016/j.cell.2013.06.044 (9 July 2013).

  22. Perez-Pinera, P. et al. Nat. Methods 10, 239–242 (2013).

    Article  CAS  Google Scholar 

  23. Maeder, M.L. et al. Nat. Methods 10, 243–245 (2013).

    Article  CAS  Google Scholar 

  24. de Groote, M.L., Verschure, P.J. & Rots, M.G. Nucleic Acids Res. 40, 10596–10613 (2012).

    Article  CAS  Google Scholar 

  25. Adler, A.F. et al. Mol.Ther. Nucleic Acids 1, e32 (2012).

    Article  Google Scholar 

  26. Beerli, R.R., Segal, D.J., Dreier, B. & Barbas, C.F. III . Proc. Natl. Acad. Sci. USA 95, 14628–14633 (1998).

    Article  CAS  Google Scholar 

  27. Gertz, J. et al. Genome Res. 22, 134–141 (2012).

    Article  CAS  Google Scholar 

  28. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Genome Biol. 10, R25 (2009).

    Article  Google Scholar 

  29. Anders, S. & Huber, W. Genome Biol. 11, R106 (2010).

    Article  CAS  Google Scholar 

Download references


This work was supported by a US National Institutes of Health (NIH) Director's New Innovator Award (DP2OD008586), National Science Foundation (NSF) Faculty Early Career Development (CAREER) Award (CBET-1151035), NIH R03AR061042, and an American Heart Association Scientist Development Grant (10SDG3060033) to C.A.G., and grants from the NIH to G.E.C. (U54HG004563), K.W.L. (EB015300 and HL109442), and F.G. (R01AR48852). K.A.G. and P.I.T. were supported by NSF Graduate Research Fellowships. L.R.P. was supported by an NIH Biotechnology Training Grant to the Duke Center for Biomolecular and Tissue Engineering (T32GM008555). D.G.O. was supported by a predoctoral fellowship from the American Heart Association. C. Grigsby (Duke University) provided the pABOL polymer used in MEF transfections.

Author information

Authors and Affiliations



P.P., C.M.V., A.F.A., D.G.O., G.E.C., T.E.R. and C.A.G. designed experiments. P.P., D.D.K., C.M.V., A.F.A., A.M.K., L.R.P., P.I.T., K.A.G. and D.G.O. performed the experiments. P.P., D.D.K., C.M.V., A.F.A., A.M.K., L.R.P., P.I.T., K.A.G., D.G.O., K.W.L., F.G., G.E.C., T.E.R. and C.A.G. analyzed the data. P.P. and C.A.G. wrote the manuscript.

Corresponding author

Correspondence to Charles A Gersbach.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, and Supplementary Tables 1 and 2 (PDF 1133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez-Pinera, P., Kocak, D., Vockley, C. et al. RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nat Methods 10, 973–976 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing