Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Imaging bacterial protein expression using genetically encoded RNA sensors

Abstract

The difficulties in imaging the dynamics of protein expression in live bacterial cells can be overcome by using fluorescent sensors based on Spinach, an RNA that activates the fluorescence of a small-molecule fluorophore. These RNAs selectively bind target proteins and exhibit fluorescence increases that enable protein expression to be imaged in living Escherichia coli. These sensors are key components of a generalizable strategy to image protein expression in a single bacterium in real time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sensitive and specific detection of proteins in vitro using Spinach-based sensors.
Figure 2: Visualization of MS2 coat protein (MCP) synthesis in individual cells after MS2 phage infection.

Similar content being viewed by others

References

  1. Paige, J.S., Nguyen-Duc, T., Song, W. & Jaffrey, S.R. Science 335, 1194 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paige, J.S., Wu, K.Y. & Jaffrey, S.R. Science 333, 642–646 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hermann, T. & Patel, D.J. Science 287, 820–825 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Srisawat, C. & Engelke, D.R. RNA 7, 632–641 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. White, R. et al. Mol. Ther. 4, 567–573 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Lowary, P.T. & Uhlenbeck, O.C. Nucleic Acids Res. 15, 10483–10493 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Viñuela, E., Algranati, I.D. & Ochoa, S. Eur. J. Biochem. 1, 3–11 (1967).

    Article  PubMed  Google Scholar 

  8. Ishihama, Y. et al. BMC Genomics 9, 102 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wilson, D.S. & Szostak, J.W. Annu. Rev. Biochem. 68, 611–647 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Tycowski, K.T., Shu, M.D., Borah, S., Shi, M. & Steitz, J.A. Cell Rep. 2, 26–32 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aucoin, M.G. et al. Microb. Cell Fact. 5, 27 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Miroux, B. & Walker, J.E. J. Mol. Biol. 260, 289–298 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, C.J., Lin, H. & Yang, X. J. Ind. Microbiol. Biotechnol. 39, 383–399 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Makino, T., Skretas, G. & Georgiou, G. Microb. Cell Fact. 10, 32 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zuker, M. Nucleic Acids Res. 31, 3406–3415 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ponchon, L. & Dardel, F. Nat. Methods 4, 571–576 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Howarth, M. et al. Nat. Methods 3, 267–273 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brosius, J., Erfle, M. & Storella, J. J. Biol. Chem. 260, 3539–3541 (1985).

    CAS  PubMed  Google Scholar 

  19. Adams, M.H. Bacteriophages (Interscience Publishers, New York, 1959).

Download references

Acknowledgements

We thank J.S. Paige for useful comments and suggestions and F. Dardel (Université Paris Descartes) for providing plasmids containing the tRNA scaffold sequence. This work was supported by the US National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, EB010249 (S.R.J.).

Author information

Authors and Affiliations

Authors

Contributions

W.S., R.L.S. and S.R.J. conceived and designed the experiments, W.S. and R.L.S. performed experiments and analyzed data, and W.S., R.L.S. and S.R.J. wrote the manuscript.

Corresponding author

Correspondence to Samie R Jaffrey.

Ethics declarations

Competing interests

S.R.J. and W.S. are authors of a patent application related to technology described in this manuscript.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1-7, Supplementary Table 1 and Supplementary Note (PDF 565 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, W., Strack, R. & Jaffrey, S. Imaging bacterial protein expression using genetically encoded RNA sensors. Nat Methods 10, 873–875 (2013). https://doi.org/10.1038/nmeth.2568

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2568

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology