Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

LipidBlast in silico tandem mass spectrometry database for lipid identification

Abstract

Current tandem mass spectral libraries for lipid annotations in metabolomics are limited in size and diversity. We provide a freely available computer-generated tandem mass spectral library of 212,516 spectra covering 119,200 compounds from 26 lipid compound classes, including phospholipids, glycerolipids, bacterial lipoglycans and plant glycolipids. We show platform independence by using tandem mass spectra from 40 different mass spectrometer types including low-resolution and high-resolution instruments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Creation, validation and application of in silico–generated tandem mass spectra in LipidBlast.
Figure 2: Platform independence of LipidBlast.

Similar content being viewed by others

References

  1. Kind, T. & Fiehn, O. Bioanal. Rev. 2, 23–60 (2010).

    Article  Google Scholar 

  2. Song, H., Hsu, F.F. & Turk, J. J. Am. Soc. Mass Spectrom. 18, 1848–1858 (2007).

    Article  CAS  Google Scholar 

  3. Yetukuri, L. et al. BMC Syst. Biol. 1, 12 (2007).

    Article  Google Scholar 

  4. Forrester, J.S., Milne, S.B., Ivanova, P.T. & Brown, H.A. Mol. Pharmacol. 65, 813–821 (2004).

    Article  CAS  Google Scholar 

  5. Yang, K., Cheng, H., Gross, R.W. & Han, X. Anal. Chem. 81, 4356–4368 (2009).

    Article  CAS  Google Scholar 

  6. Bou Khalil, M. et al. Mass Spectrom. Rev. 29, 877–929 (2010).

    Article  Google Scholar 

  7. Taguchi, R. & Ishikawa, M. J. Chromatogr. A 1217, 4229–4239 (2010).

    Article  CAS  Google Scholar 

  8. Herzog, R. et al. PLoS ONE 7, e29851 (2012).

    Article  CAS  Google Scholar 

  9. Fahy, E., Sud, M., Cotter, D. & Subramaniam, S. Nucleic Acids Res. 35, W606–W612 (2007).

    Article  Google Scholar 

  10. Sud, M. et al. Nucleic Acids Res. 35, D527–D532 (2007).

    Article  CAS  Google Scholar 

  11. Pirok, G. et al. J. Chem. Inf. Model. 46, 563–568 (2006).

    Article  CAS  Google Scholar 

  12. Schüller, A., Hähnke, V. & Schneider, G. QSAR Comb. Sci. 26, 407–410 (2007).

    Article  Google Scholar 

  13. Stein, S.E. & Scott, D.R. J. Am. Soc. Mass Spectrom. 5, 859–866 (1994).

    Article  CAS  Google Scholar 

  14. Quehenberger, O. et al. J. Lipid Res. 51, 3299–3305 (2010).

    Article  CAS  Google Scholar 

  15. Gao, X. et al. Anal. Bioanal. Chem. 402, 2923–2933 (2012).

    Article  CAS  Google Scholar 

  16. Sud, M., Fahy, E. & Subramaniam, S. J. Cheminform. 4, 23 (2012).

    Article  CAS  Google Scholar 

  17. Subramaniam, S. et al. Chem. Rev. 111, 6452–6490 (2011).

    Article  CAS  Google Scholar 

  18. Kangas, L.J. et al. Bioinformatics 28, 1705–1713 (2012).

    Article  CAS  Google Scholar 

  19. Sartain, M.J., Dick, D.L., Rithner, C.D., Crick, D.C. & Belisle, J.T. J. Lipid Res. 52, 861–872 (2011).

    Article  CAS  Google Scholar 

  20. Layre, E. et al. Chem. Biol. 18, 1537–1549 (2011).

    Article  CAS  Google Scholar 

  21. Sheldon, M.T., Mistrik, R. & Croley, T.R. J. Am. Soc. Mass Spectrom. 20, 370–376 (2009).

    Article  CAS  Google Scholar 

  22. Stein, S. Anal. Chem. 84, 7274–7282 (2012).

    Article  CAS  Google Scholar 

  23. Matyash, V., Liebisch, G., Kurzchalia, T.V., Shevchenko, A. & Schwudke, D. J. Lipid Res. 49, 1137–1146 (2008).

    Article  CAS  Google Scholar 

  24. Sandra, K., Pereira Ados, S., Vanhoenacker, G., David, F. & Sandra, P. J. Chromatogr. A 1217, 4087–4099 (2010).

    Article  CAS  Google Scholar 

  25. Mayampurath, A.M. et al. Bioinformatics 24, 1021–1023 (2008).

    Article  CAS  Google Scholar 

  26. Chambers, M.C. et al. Nat. Biotechnol. 30, 918–920 (2012).

    Article  CAS  Google Scholar 

  27. Frank, A.M. et al. J. Proteome Res. 7, 113–122 (2008).

    Article  CAS  Google Scholar 

  28. Stein, S.E. & Heller, D.N. J. Am. Soc. Mass Spectrom. 17, 823–835 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Lipid MAPS consortium and the US National Institute of General Medical Sciences for providing extensive lipid identification and database services; the NIST Mass Spectrometry group for providing the freely available NIST MS Search GUI program and for help with the Lib2NIST converter; ModLab (Universität Frankfurt am Main) for providing the free SMILIB enumeration tool; and ChemAxon for a free research license for the Marvin and Instant-JChem cheminformatics tools. K.-H.L. was supported by the National Research Foundation of Korea, Ministry of Education, Science and Technology (grant 2010-0021368), the Korea Healthcare Technology R&D Project, Ministry of Health and Welfare (grant A103017) and the Cooperative Research Program for Agriculture Science and Technology Development (project PJ00948604), Rural Development Administration, Republic of Korea. T.K. and O.F. were supported by the US National Science Foundation (MCB 1139644) and US National Institutes of Health (P20 HL113452 and U24 DK097154).

Author information

Authors and Affiliations

Authors

Contributions

T.K., K.-H.L., D.Y.L. and O.F. designed the experiments. T.K., K.-H.L., B.D., J.K.M. and D.Y.L. performed mass spectrometric experiments. T.K. and K.-H.L. performed mass spectral fragmentation analysis and compound annotations. T.K. created the compound structures and developed the in silico MS/MS libraries and wrote and validated the algorithm. T.K. and O.F. wrote the manuscript in interaction with all contributing authors.

Corresponding authors

Correspondence to Tobias Kind or Oliver Fiehn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure and Note

Supplementary Figure 1–5 and Supplementary Note 1 (PDF 10817 kb)

Supplementary Table 1

Detailed statistics of the LipidBlast MS/MS libraries with detailed lipid compound numbers (XLS 97 kb)

Supplementary Table 2

Complete table of mass spectrometry platforms that can be used with the LipidBlast libraries (XLS 112 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kind, T., Liu, KH., Lee, D. et al. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods 10, 755–758 (2013). https://doi.org/10.1038/nmeth.2551

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2551

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research