Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Heritable genome editing in C. elegans via a CRISPR-Cas9 system



We report the use of clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated endonuclease Cas9 to target genomic sequences in the Caenorhabditis elegans germ line using single-guide RNAs that are expressed from a U6 small nuclear RNA promoter. Our results demonstrate that targeted, heritable genetic alterations can be achieved in C. elegans, providing a convenient and effective approach for generating loss-of-function mutants.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vectors that drive expression of Cas9 and sgRNAs in C. elegans.
Figure 2: Heritable, targeted gene disruptions in the germ line using CRISPR-Cas systems.


  1. Wiedenheft, B., Sternberg, S.H. & Doudna, J.A. Nature 482, 331–338 (2012).

    Article  CAS  Google Scholar 

  2. Terns, M.P. & Terns, R.M. Curr. Opin. Microbiol. 14, 321–327 (2011).

    Article  CAS  Google Scholar 

  3. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Proc. Natl. Acad. Sci. USA 109, E2579–E2586 (2012).

    Article  CAS  Google Scholar 

  4. Jinek, M. et al. Science 337, 816–821 (2012).

    Article  CAS  Google Scholar 

  5. Dicarlo, J.E. et al. Nucleic Acids Res. 41, 4336–4343 (2013).

    Article  CAS  Google Scholar 

  6. Gratz, S.J. et al. Genetics advance online publication 24 May 2013 (doi: 10.1534/genetics.113.152710).

    Article  CAS  Google Scholar 

  7. Cho, S.W., Kim, S., Kim, J.M. & Kim, J.S. Nat. Biotechnol. 31, 230–232 (2013).

    Article  CAS  Google Scholar 

  8. Cong, L. et al. Science 339, 819–823 (2013).

    Article  CAS  Google Scholar 

  9. Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013).

    Article  Google Scholar 

  10. Mali, P. et al. Science 339, 823–826 (2013).

    Article  CAS  Google Scholar 

  11. Hwang, W.Y. et al. Nat. Biotechnol. 31, 227–229 (2013).

    Article  CAS  Google Scholar 

  12. Wang, H. et al. Cell 153, 410–418 (2013).

    Google Scholar 

  13. Frokjaer-Jensen, C., Davis, M.W., Ailion, M. & Jorgensen, E.M. Nat. Methods 9, 117–118 (2012).

    Article  CAS  Google Scholar 

  14. Miyagishi, M. & Taira, K. Nat. Biotechnol. 20, 497–500 (2002).

    Article  CAS  Google Scholar 

  15. Fruscoloni, P., Zamboni, M., Panetta, G., De Paolis, A. & Tocchini-Valentini, G.P. Nucleic Acids Res. 23, 2914–2918 (1995).

    Article  CAS  Google Scholar 

  16. Zecherle, G.N., Whelen, S. & Hall, B.D. Mol. Cell Biol. 16, 5801–5810 (1996).

    Article  CAS  Google Scholar 

  17. von Mende, N., Bird, D.M., Albert, P.S. & Riddle, D.L. Cell 55, 567–576 (1988).

    Article  CAS  Google Scholar 

  18. Maduro, M. & Pilgrim, D. Genetics 141, 977–988 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Mello, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  Google Scholar 

  20. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L.A. Nat. Biotechnol. 31, 233–239 (2013).

    Article  CAS  Google Scholar 

  21. Brenner, S. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Thomas, J., Lea, K., Zucker-Aprison, E. & Blumenthal, T. Nucleic Acids Res. 18, 2633–2642 (1990).

    Article  CAS  Google Scholar 

  23. Meyer, L.R. et al. Nucleic Acids Res. 41, D64–D69 (2013).

    Article  CAS  Google Scholar 

  24. Gibson, D.G. et al. Nat. Methods 6, 343–345 (2009).

    Article  CAS  Google Scholar 

  25. Kadandale, P., Chatterjee, I. & Singson, A. Methods Mol. Biol. 518, 123–133 (2009).

    Article  CAS  Google Scholar 

Download references


We thank members of the Caenorhabditis Genetics Center for providing the N2 strain used in our experiments, and B. Stern, A. Murray, A. Saltzman, Joe Calarco and members of the Calarco laboratory for comments on the manuscript. This work was supported by US National Institutes of Health Early Independence Award (1DP5OD009153) and additional support from Harvard University to J.A.C., by National Institutes of Health grant R01GM072551 to M.P.C., and a National Human Genome Research Institute Center of Excellence in Genome Sciences award to G.M.C. A.E.F. is supported by a Ralph Ellison/American Federation for Aging Research postdoctoral fellowship.

Author information

Authors and Affiliations



A.E.F., K.M.E. and J.A.C. conceived of and designed experiments, with help from Y.B.T.; A.E.F. and J.A.C. assembled vectors; A.E.F. and J.A.C. performed microinjections and screened mutants; A.E.F., J.A.C. and Y.B.T. performed off-target genotyping analysis; A.E.F., K.M.E. and J.A.C. wrote the manuscript with input from Y.B.T., M.P.C. and G.M.C.

Corresponding authors

Correspondence to George M Church or John A Calarco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Tables

Supplementary Figures 1–4, and Supplementary Tables 1 and 2 (PDF 5711 kb)

Supplementary Video 1

Movie of a wild-type (N2 strain) worm. (MOV 1114 kb)

Supplementary Video 2

Movie of an unc-119 worm created by Cas9-mediated gene disruption. (MOV 1739 kb)

Supplementary Video 3

Movie of a dpy-13 worm created by Cas9-mediated gene disruption. (MOV 1641 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Friedland, A., Tzur, Y., Esvelt, K. et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10, 741–743 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing