Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MicroRNA target site identification by integrating sequence and binding information


High-throughput sequencing has opened numerous possibilities for the identification of regulatory RNA-binding events. Cross-linking and immunoprecipitation of Argonaute proteins can pinpoint a microRNA (miRNA) target site within tens of bases but leaves the identity of the miRNA unresolved. A flexible computational framework, microMUMMIE, integrates sequence with cross-linking features and reliably identifies the miRNA family involved in each binding event. It considerably outperforms sequence-only approaches and quantifies the prevalence of noncanonical binding modes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identifying miRNA target sites by a joint sequence-interaction model.
Figure 2: Validation of predicted sites and their impact on expression.

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus


  1. Jiang, Q. et al. Nucleic Acids Res. 37, D98–D104 (2009).

    Article  CAS  Google Scholar 

  2. Hendrickson, D.G., Hogan, D.J., Herschlag, D., Ferrell, J.E. & Brown, P.O. PLoS ONE 3, e2126 (2008).

    Article  Google Scholar 

  3. Chi, S.W., Zang, J.B., Mele, A. & Darnell, R.B. Nature 460, 479–486 (2009).

    Article  CAS  Google Scholar 

  4. Hafner, M. et al. Cell 141, 129–141 (2010).

    Article  CAS  Google Scholar 

  5. Sugimoto, Y. et al. Genome Biol. 13, R67 (2012).

    Article  Google Scholar 

  6. Corcoran, D.L. et al. Genome Biol. 12, R79 (2011).

    Article  CAS  Google Scholar 

  7. Bartel, D.P. Cell 136, 215–233 (2009).

    Article  CAS  Google Scholar 

  8. Baltz, A.G. et al. Mol. Cell 46, 674–690 (2012).

    Article  CAS  Google Scholar 

  9. Juang, B.H. & Rabiner, L.R. Technometrics 33, 251–272 (1991).

    Article  Google Scholar 

  10. Friedman, R.C., Farh, K.K.-H., Burge, C.B. & Bartel, D.P. Genome Res. 19, 92–105 (2009).

    Article  CAS  Google Scholar 

  11. Khorshid, M., Hausser, J., Zavolan, M. & van Nimwegen, E. Nat. Methods 10, 253–255 (2013).

    Article  CAS  Google Scholar 

  12. Skalsky, R.L. et al. PLoS Pathog. 8, e1002484 (2012).

    Article  CAS  Google Scholar 

  13. Kishore, S. et al. Nat. Methods 8, 559–564 (2011).

    Article  CAS  Google Scholar 

  14. Chi, S.W., Hannon, G.J. & Darnell, R.B. Nat. Struct. Mol. Biol. 19, 321–327 (2012).

    Article  CAS  Google Scholar 

  15. Shin, C. et al. Mol. Cell 38, 789–802 (2010).

    Article  CAS  Google Scholar 

  16. Brennecke, J., Stark, A., Russell, R.B. & Cohen, S.M. PLoS Biol. 3, e85 (2005).

    Article  Google Scholar 

  17. Leung, A.K. et al. Nat. Struct. Mol. Biol. 18, 237–244 (2011).

    Article  CAS  Google Scholar 

  18. Betel, D., Koppal, A., Agius, P., Sander, C. & Leslie, C. Genome Biol. 11, R90 (2010).

    Article  Google Scholar 

  19. Siepel, A. et al. Genome Res. 15, 1034–1050 (2005).

    Article  CAS  Google Scholar 

  20. Feederle, R. et al. J. Virol. 85, 9801–9810 (2011).

    Article  CAS  Google Scholar 

  21. Flicek, P. et al. Nucleic Acids Res. 38 (suppl. 1), D557–D562 (2010).

    Article  CAS  Google Scholar 

  22. Li, B. & Dewey, C.N. BMC Bioinformatics 12, 323 (2011).

    Article  CAS  Google Scholar 

  23. Leng, N. et al. Bioinformatics 29, 1035–1043 (2013).

    Article  CAS  Google Scholar 

  24. Majoros, W.H. Methods for Computational Gene Prediction (Cambridge Univ. Press, 2007).

  25. Fariselli, P., Martelli, P.L. & Casadio, R. BMC Bioinformatics 6 (suppl. 4), S12 (2005).

    Article  Google Scholar 

  26. Lekprasert, P., Mayhew, M. & Ohler, U. PLoS ONE 6, e20622 (2011).

    Article  CAS  Google Scholar 

Download references


This work was supported by grants from the US National Science Foundation (MCB-0822033) and US National Institutes of Health (NIH R01-GM104962) to U.O. and by awards from the NIH (R01-AI067968; R01-DA030086) to B.R.C. Contributions by R.L.S. were additionally supported by a Duke Center for AIDS Research small grant award (P30-AI064518). We thank S. Grosswendt and M. Piechotta for critical reading of a manuscript draft.

Author information

Authors and Affiliations



W.H.M. implemented the modeling framework and designed the models, P.L. and W.H.M. performed the computational experiments, P.L. investigated bulge sites, and N.M. and D.L.C. configured and ran the PARalyzer pipeline and provided guidance on analyzing its outputs. P.L., W.H.M. and U.O. analyzed the data. R.L.S., B.R.C. and N.M. designed and performed wet-lab experiments, and W.H.M., P.L. and U.O. wrote the manuscript.

Corresponding author

Correspondence to Uwe Ohler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Tables 1–4 (PDF 2192 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Majoros, W., Lekprasert, P., Mukherjee, N. et al. MicroRNA target site identification by integrating sequence and binding information. Nat Methods 10, 630–633 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing