Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Imaging human connectomes at the macroscale

At macroscopic scales, the human connectome comprises anatomically distinct brain areas, the structural pathways connecting them and their functional interactions. Annotation of phenotypic associations with variation in the connectome and cataloging of neurophenotypes promise to transform our understanding of the human brain. In this Review, we provide a survey of magnetic resonance imaging–based measurements of functional and structural connectivity. We highlight emerging areas of development and inquiry and emphasize the importance of integrating structural and functional perspectives on brain architecture.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Different parcellations of the human brain.
Figure 2: Diffusion imaging of structural connectivity maps for a human brain.
Figure 3: Visualizing the connectome.

References

  1. Sporns, O., Tononi, G. & Kötter, R. The human connectome: A structural description of the human brain. PLoS Comput. Biol. 1, e42 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Varela, F., Lachaux, J.P., Rodriguez, E. & Martinerie, J. The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Biswal, B.B. et al. Toward discovery science of human brain function. Proc. Natl. Acad. Sci. USA 107, 4734–4739 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Behrens, T.E.J. & Sporns, O. Human connectomics. Curr. Opin. Neurobiol. 22, 144–153 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Kelly, C., Biswal, B.B., Craddock, R.C., Castellanos, X.F. & Milham, M.P. Characterizing variation in the functional connectome: promise and pitfalls. Trends Cogn. Sci. 16, 181–188 (2012).

    Article  PubMed  Google Scholar 

  6. Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (Thieme Classics, 1988).

  7. Margulies, D.S. et al. Mapping the functional connectivity of anterior cingulate cortex. Neuroimage 37, 579–588 (2007).

    Article  PubMed  Google Scholar 

  8. Beckmann, M., Johansen-Berg, H. & Rushworth, M.F.S. Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization. J. Neurosci. 29, 1175–1190 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dosenbach, N.U. et al. A core system for the implementation of task sets. Neuron 50, 799–812 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bellec, P. et al. Identification of large-scale networks in the brain using fMRI. Neuroimage 29, 1231–1243 (2006).

    Article  PubMed  Google Scholar 

  11. Craddock, R.C., James, G.A., Holtzheimer, P.E., Hu, X.P. & Mayberg, H.S. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012).

    Article  PubMed  Google Scholar 

  12. Cohen, A.L. et al. Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage 41, 45–57 (2008).

    Article  PubMed  Google Scholar 

  13. Kiviniemi, V. et al. Functional segmentation of the brain cortex using high model order group PICA. Hum. Brain Mapp. 30, 3865–3886 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jones, D.K. Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI. Imaging 2, 341–355 (2010).

    Article  Google Scholar 

  15. Andersson, J.L.R., Skare, S. & Ashburner, J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage 20, 870–888 (2003).

    Article  PubMed  Google Scholar 

  16. Alexander, A.L., Tsuruda, J.S. & Parker, D.L. Elimination of eddy current artifacts in diffusion-weighted echo-planar images: the use of bipolar gradients. Magn. Reson. Med. 38, 1016–1021 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Haselgrove, J.C. & Moore, J.R. Correction for distortion of echo-planar images used to calculate the apparent diffusion coefficient. Magn. Reson. Med. 36, 960–964 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Anderson, J. et al. A comprehensive Gaussian Process framework for correcting distortions and movements in diffusion images. in Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM) 20th Annual Meeting and Exhibition (Melbourne, 2012).

  19. Sotiropoulos, S.N. et al. Effects of image reconstruction on fibre orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE. Magn. Reson. Med. advance online publication, doi:10.1002/mrm.24623 (7 February 2013).

  20. Leemans, A. & Jones, D.K. The B-matrix must be rotated when correcting for subject motion in DTI data. Magn. Reson. Med. 61, 1336–1349 2009).

    Article  PubMed  Google Scholar 

  21. Seunarine, K. & Alexander, D. Multiple fibers: beyond the diffusion tensor. in Diffusion MRI: From Quantitative Measurement to in vivo Neuroanatomy (eds., Johansen-Berg, H. and Behrens, T.E.J.) 55–72 (Academic Press, 2009).

  22. Basser, P.J., Mattiello, J. & LeBihan, D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103, 247–254 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Tuch, D.S. et al. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48, 577–582 (2002).

    Article  PubMed  Google Scholar 

  24. Wedeen, V.J., Hagmann, P., Tseng, W.Y., Reese, T.G. & Weisskoff, R.M. Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn. Reson. Med. 54, 1377–1386 (2005).

    Article  PubMed  Google Scholar 

  25. Behrens, T.E., Berg, H.J., Jbabdi, S., Rushworth, M.F. & Woolrich, M.W. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage 34, 144–155 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Catani, M., Howard, R.J., Pajevic, S. & Jones, D.K. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17, 77–94 (2002).

    Article  PubMed  Google Scholar 

  27. Jbabdi, S. & Johansen-Berg, H. Tractography: where do we go from here? Brain Connect. 1, 169–183 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Assaf, Y., Blumenfeld-Katzir, T., Yovel, Y. & Basser, P.J. AxCaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn. Reson. Med. 59, 1347–1354 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jones, D.K., Knosche, T.R. & Turner, R. White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI. Neuroimage 73, 239–254 (2013).

    Article  PubMed  Google Scholar 

  30. Mikula, S., Binding, J. & Denk, W. Staining and embedding the whole mouse brain for electron microscopy. Nat. Methods 9, 1198–1201 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Behrens, T. & Jbabdi, S. MR diffusion tractography. in Diffusion MRI: From Quantitative Measurement to in vivo Neuroanatomy (eds., Johansen-Berg, H. and Behrens, T.E.J.) 333–352 (Academic Press, 2009).

  32. Friston, K.J., Frith, C.D., Liddle, P.F. & Frackowiak, R.S. Functional connectivity: the principal-component analysis of large (PET) data sets. J. Cereb. Blood Flow Metab. 13, 5–14 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Mennes, M., Kelly, C., Colcombe, S., Castellanos, F.X. & Milham, M.P. The extrinsic and intrinsic functional architectures of the human brain are not equivalent. Cereb. Cortex 23, 223–229 (2013).

    Article  PubMed  Google Scholar 

  34. Biswal, B., Yetkin, F.Z., Haughton, V.M. & Hyde, J.S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Toro, R., Fox, P.T. & Paus, T. Functional coactivation map of the human brain. Cereb. Cortex 18, 2553–2559 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chuang, K.-H. et al. Mapping resting-state functional connectivity using perfusion MRI. Neuroimage 40, 1595–1605 (2008).

    Article  PubMed  Google Scholar 

  37. Ogawa, S. et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl. Acad. Sci. USA 89, 5951–5955 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu, C.W. et al. Empirical evaluations of slice-timing, smoothing, and normalization effects in seed-based, resting-state functional magnetic resonance imaging analyses. Brain Connect. 1, 401–410 (2011).

    Article  PubMed  Google Scholar 

  39. Friston, K.J. et al. Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6, 218–229 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Friston, K.J., Williams, S., Howard, R., Frackowiak, R.S. & Turner, R. Movement-related effects in fMRI time-series. Magn. Reson. Med. 35, 346–355 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L. & Petersen, S.E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).

    Article  PubMed  Google Scholar 

  42. Van Dijk, K.R.A., Sabuncu, M.R. & Buckner, R.L. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 59, 431–438 (2012).

    Article  PubMed  Google Scholar 

  43. Satterthwaite, T.D. et al. Impact of in-scanner head motion on multiple measures of functional connectivity: Relevance for studies of neurodevelopment in youth. Neuroimage 60, 623–632 (2012).

    Article  PubMed  Google Scholar 

  44. Satterthwaite, T.D. et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64, 240–256 (2013).

    Article  PubMed  Google Scholar 

  45. Yan, C.G. et al. A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage 76C, 183–201 (2013).

    Article  Google Scholar 

  46. Lund, T.E. fcMRI–mapping functional connectivity or correlating cardiac-induced noise? Magn. Reson. Med. 46, 628–629 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Birn, R.M. The role of physiological noise in resting-state functional connectivity. Neuroimage 62, 864–870 (2012).

    Article  PubMed  Google Scholar 

  48. Jo, H.J., Saad, Z.S., Simmons, W.K., Milbury, L.A. & Cox, R.W. Mapping sources of correlation in resting state fMRI, with artifact detection and removal. Neuroimage 52, 571–582 (2010).

    Article  PubMed  Google Scholar 

  49. Perlbarg, V. et al. CORSICA: correction of structured noise in fMRI by automatic identification of ICA components. Magn. Reson. Imaging 25, 35–46 (2007).

    Article  PubMed  Google Scholar 

  50. Fox, M.D., Zhang, D., Snyder, A.Z. & Raichle, M.E. The global signal and observed anticorrelated resting state brain networks. J. Neurophysiol. 101, 3270–3283 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Murphy, K., Birn, R.M., Handwerker, D.a., Jones, T.B. & Bandettini, P.a. The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? Neuroimage 44, 893–905 (2009).

    Article  PubMed  Google Scholar 

  52. Saad, Z. et al. Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect. 2, 25–32 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schölvinck, M.L., Maier, A., Ye, F.Q., Duyn, J.H. & Leopold, D.A. Neural basis of global resting-state fMRI activity. Proc. Natl. Acad. Sci. USA 107, 10238–10243 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cordes, D. et al. Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am. J. Neuroradiol. 22, 1326–1333 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Niazy, R.K., Xie, J., Miller, K., Beckmann, C.F. & Smith, S.M. Spectral characteristics of resting state networks. Prog. Brain Res. 193, 259–276 (2011).

    Article  PubMed  Google Scholar 

  56. Worsley, K.J., Marrett, S., Neelin, P. & Evans, A.C. Searching scale space for activation in PET images. Hum. Brain Mapp. 4, 74–90 (1996).

    Article  CAS  PubMed  Google Scholar 

  57. Marrelec, G. et al. Regions, systems, and the brain: hierarchical measures of functional integration in fMRI. Med. Image Anal. 12, 484–496 (2008).

    Article  PubMed  Google Scholar 

  58. Friston, K.J. & Frith, C.D. Time dependent changes in effective connectivity measured with PET. Hum. Brain Mapp. 1, 69–79 (1993).

    Article  Google Scholar 

  59. Smith, S.M. et al. Network modelling methods for fMRI. Neuroimage 54, 875–891 (2011).

    Article  PubMed  Google Scholar 

  60. Varoquaux, G., Gramfort, A. & Poline, J.B. Advances in Neural Information Processing Systems. (Vancouver, Canada, 2010).

  61. Marrelec, G. et al. Partial correlation for functional brain interactivity investigation in functional MRI. Neuroimage 32, 228–237 (2006).

    Article  PubMed  Google Scholar 

  62. Varoquaux, G. et al. A group model for stable multi-subject ICA on fMRI datasets. Neuroimage 51, 288–299 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Lowe, M.J., Dzemidzic, M., Lurito, J.T., Mathews, V.P. & Phillips, M.D. Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage 12, 582–587 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. Sun, F.T., Miller, L.M. & D'Esposito, M. Measuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data. Neuroimage 21, 647–658 (2004).

    Article  PubMed  Google Scholar 

  65. Rissman, J., Gazzaley, A. & D'Esposito, M. Measuring functional connectivity during distinct stages of a cognitive task. Neuroimage 23, 752–763 (2004).

    Article  PubMed  Google Scholar 

  66. Patel, R.S., Bowman, F.D. & Rilling, J.K. A Bayesian approach to determining connectivity of the human brain. Hum. Brain Mapp. 27, 267–276 (2006).

    Article  PubMed  Google Scholar 

  67. Smith, S.M. et al. Correspondence of the brain's functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA 106, 13040–13045 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Peltier, S.J., Polk, T.A. & Noll, D.C. Detecting low-frequency functional connectivity in fMRI using a self-organizing map (SOM) algorithm. Hum. Brain Mapp. 20, 220–226 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  69. van den Heuvel, M., Mandl, R. & Hulshoff Pol, H. Normalized cut group clustering of resting-state fMRI data. PLoS ONE 3, e2001 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Beckmann, C.F. Modelling with independent components. Neuroimage 62, 891–901 (2012).

    Article  PubMed  Google Scholar 

  71. Breakspear, M., Brammer, M.J., Bullmore, E.T., Das, P. & Williams, L.M. Spatiotemporal wavelet resampling for functional neuroimaging data. Hum. Brain Mapp. 23, 1–25 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Bellec, P., Marrelec, G. & Benali, H. A bootstrap test to investigate changes in brain connectivity for functional MRI. Stat. Sin. 18, 1253–1268 (2008).

    Google Scholar 

  73. Smith, S.M. et al. Temporally-independent functional modes of spontaneous brain activity. Proc. Natl. Acad. Sci. USA 109, 3131–3136 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Waites, A.B., Stanislavsky, A., Abbott, D.F. & Jackson, G.D. Effect of prior cognitive state on resting state networks measured with functional connectivity. Hum. Brain Mapp. 24, 59–68 (2005).

    Article  PubMed  Google Scholar 

  75. Stevens, W.D., Buckner, R.L. & Schacter, D.L. Correlated low-frequency BOLD fluctuations in the resting human brain are modulated by recent experience in category-preferential visual regions. Cereb. Cortex 20, 1997–2006 (2010).

    Article  PubMed  Google Scholar 

  76. Klingner, C.M., Hasler, C., Brodoehl, S., Axer, H. & Witte, O.W. Perceptual plasticity is mediated by connectivity changes of the medial thalamic nucleus. Hum. Brain Mapp. advance online publication, doi:10.1002/hbm.22074 (25 March 2012).

  77. Riedl, V. et al. Repeated pain induces adaptations of intrinsic brain activity to reflect past and predict future pain. Neuroimage 57, 206–213 (2011).

    Article  PubMed  Google Scholar 

  78. Vercammen, A., Knegtering, H., Liemburg, E.J., den Boer, J.A. & Aleman, A. Functional connectivity of the temporo-parietal region in schizophrenia: effects of rTMS treatment of auditory hallucinations. J. Psychiatr. Res. 44, 725–731 (2010).

    Article  PubMed  Google Scholar 

  79. Keeser, D. et al. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J. Neurosci. 31, 15284–15293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fox, M.D., Buckner, R.L., White, M.P., Greicius, M.D. & Pascual-Leone, A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol. Psychiatry 72, 595–603 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tambini, A., Ketz, N. & Davachi, L. Enhanced brain correlations during rest are related to memory for recent experiences. Neuron 65, 280–290 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lewis, C.M., Baldassarre, A., Committeri, G., Romani, G.L. & Corbetta, M. Learning sculpts the spontaneous activity of the resting human brain. Proc. Natl. Acad. Sci. USA 106, 17558–17563 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Koyama, M.S. et al. Cortical signatures of dyslexia and remediation: an intrinsic functional connectivity approach. PLoS ONE 8, e55454 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Varoquaux, G. & Craddock, R.C. Learning and comparing functional connectomes across subjects. Neuroimage advance online publication, doi:10.1016/j.neuroimage.2013.04.007 (11 April 2013).

  85. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010).

    Article  PubMed  Google Scholar 

  86. Genovese, C.R., Lazar, N.A. & Nichols, T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15, 870–878 (2002).

    Article  PubMed  Google Scholar 

  87. Efron, B. When should hypothesis testing problems be combined? Ann. Appl. Stat. 2, 197–223 (2008).

    Article  Google Scholar 

  88. Zalesky, A., Fornito, A. & Bullmore, E.T. Network-based statistic: identifying differences in brain networks. Neuroimage 53, 1197–1207 (2010).

    Article  PubMed  Google Scholar 

  89. Hu, J.X., Zhao, H. & Zhou, H.H. False Discovery Rate Control With Groups. J. Am. Stat. Assoc. 105, 1215–1227 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Craddock, R.C., Holtzheimer, P.E., Hu, X.P. & Mayberg, H.S. Disease state prediction from resting state functional connectivity. Magn. Reson. Med. 62, 1619–1628 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Dosenbach, N.U.F. et al. Prediction of individual brain maturity using fMRI. Science 329, 1358–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bunke, H. A graph distance metric based on the maximal common subgraph. Pattern Recognit. Lett. 19, 255–259 (1998).

    Article  Google Scholar 

  93. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  94. Bullmore, E.T. & Bassett, D.S. Brain graphs: graphical models of the human brain connectome. Annu. Rev. Clin. Psychol. 7, 113–140 (2011).

    Article  PubMed  Google Scholar 

  95. Zuo, X.N. et al. Network centrality in the human functional connectome. Cereb. Cortex 22, 1862–1875 (2012).

    Article  PubMed  Google Scholar 

  96. Bassett, D.S., Meyer-Lindenberg, A., Achard, S., Duke, T. & Bullmore, E. Adaptive reconfiguration of fractal small-world human brain functional networks. Proc. Natl. Acad. Sci. USA 103, 19518–19523 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Richiardi, J., Eryilmaz, H., Schwartz, S., Vuilleumier, P. & Van De Ville, D. Decoding brain states from fMRI connectivity graphs. Neuroimage 56, 616–626 (2011).

    Article  PubMed  Google Scholar 

  98. Hansen, L.K. Multivariate strategies in functional magnetic resonance imaging. Brain Lang. 102, 186–191 (2007).

    Article  PubMed  Google Scholar 

  99. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning (Springer, 2001).

  100. Zhu, C.Z. et al. Discriminative analysis of brain function at resting-state for attention-deficit/hyperactivity disorder. Med. Image Comput. Comput. Assist. Interv. 8, 468–475 (2005).

    CAS  PubMed  Google Scholar 

  101. Vincent, J.L. et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 83–86 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Pawela, C.P. et al. Resting-state functional connectivity of the rat brain. Magn. Reson. Med. 59, 1021–1029 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Becerra, L., Pendse, G., Chang, P.-C., Bishop, J. & Borsook, D. Robust reproducible resting state networks in the awake rodent brain. PLoS ONE 6, e25701 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, K. et al. Temporal scaling properties and spatial synchronization of spontaneous blood oxygenation level-dependent (BOLD) signal fluctuations in rat sensorimotor network at different levels of isoflurane anesthesia. NMR Biomed. 24, 61–67 (2011).

    Article  PubMed  Google Scholar 

  105. Pawela, C.P. et al. A protocol for use of medetomidine anesthesia in rats for extended studies using task-induced BOLD contrast and resting-state functional connectivity. Neuroimage 46, 1137–1147 (2009).

    Article  PubMed  Google Scholar 

  106. Sörös, P. & Stanton, S.G. On variability and genes: inter-individual differences in auditory brain function. Front. Hum. Neurosci. 6, 150 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kapur, S., Phillips, A.G. & Insel, T.R. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Mol. Psychiatry 17, 1174–1179 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Mennes, M., Biswal, B.B., Castellanos, F.X. & Milham, M.P. Making data sharing work: the FCP/INDI experience. Neuroimage advance online publication, doi:10.1016/j.neuroimage.2012.10.064 (30 October 2012).

  109. Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15, 273–289 (2002).

    Article  CAS  PubMed  Google Scholar 

  110. Desikan, R.S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).

    Article  PubMed  Google Scholar 

  111. Eickhoff, S.B. et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25, 1325–1335 (2005).

    Article  PubMed  Google Scholar 

  112. Lancaster, J.L. et al. Automated Talairach atlas labels for functional brain mapping. Hum. Brain Mapp. 10, 120–131 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Margulies, D.S. et al. Precuneus shares intrinsic functional architecture in humans and monkeys. Proc. Natl. Acad. Sci. USA 106, 20069–20074 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Knock, S.A. et al. The effects of physiologically plausible connectivity structure on local and global dynamics in large scale brain models. J. Neurosci. Methods 183, 86–94 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Van Horn, J.D. et al. Mapping connectivity damage in the case of Phineas Gage. PLoS ONE 7, e37454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jiang, T. Brainnetome: a new -ome to understand the brain and its disorders. Neuroimage advance online publication, doi:10.1016/j.neuroimage.2013.04.002 (6 April 2013).

  117. Haacke, E.M., Bornw, R.W., Thompson, M.R. & Venkatesan, R. Magnetic Resonance Imaging: Physical Principles and Sequence Design (Wiley-Liss, 1999).

  118. Bernstein, M.A., King, K.F. & Zhou, X.J. Handbook of MRI Pulse Sequences (Academic Press, 2004).

  119. Blaimer, M. et al. SMASH, SENSE, PILS, GRAPPA: how to choose the optimal method. Top. Magn. Reson. Imaging 15, 223–236 (2004).

    Article  PubMed  Google Scholar 

  120. Yacoub, E. et al. Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magn. Reson. Med. 49, 655–664 (2003).

    Article  PubMed  Google Scholar 

  121. Weiskopf, N., Hutton, C., Josephs, O. & Deichmann, R. Optimal EPI parameters for reduction of susceptibility-induced BOLD sensitivity losses: a whole-brain analysis at 3 T and 1.5 T. Neuroimage 33, 493–504 (2006).

    Article  PubMed  Google Scholar 

  122. Glover, G.H. & Law, C.S. Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magn. Reson. Med. 46, 515–522 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Heberlein, K.A. & Hu, X. Simultaneous acquisition of gradient-echo and asymmetric spin-echo for single-shot z-shim: Z-SAGA. Magn. Reson. Med. 51, 212–216 (2004).

    Article  PubMed  Google Scholar 

  124. Gonzalez-Castillo, J., Roopchansingh, V., Bandettini, P.A. & Bodurka, J. Physiological noise effects on the flip angle selection in BOLD fMRI. Neuroimage 54, 2764–2778 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Grootoonk, S. et al. Characterization and correction of interpolation effects in the realignment of fMRI time series. Neuroimage 11, 49–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Noll, D.C., Cohen, J.D., Meyer, C.H. & Schneider, W. Spiral K-space MR imaging of cortical activation. J. Magn. Reson. Imaging 5, 49–56 (1995).

    Article  CAS  PubMed  Google Scholar 

  127. Rabrait, C. et al. High temporal resolution functional MRI using parallel echo volumar imaging. J. Magn. Reson. Imaging 27, 744–753 (2008).

    Article  PubMed  Google Scholar 

  128. Moeller, S. et al. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med. 63, 1144–1153 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Setsompop, K. et al. Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage 63, 569–580 (2012).

    Article  CAS  PubMed  Google Scholar 

  130. Feinberg, D.A. et al. Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PLoS ONE 5, e15710 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bright, M.G. & Murphy, K. Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data. Neuroimage 64, 526–537 (2013).

    Article  PubMed  Google Scholar 

  132. Heine, L. et al. Resting state networks and consciousness: alterations of multiple resting state network connectivity in physiological, pharmacological, and pathological consciousness States. Front. Psychol. 3, 295 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Boly, M. et al. Brain connectivity in disorders of consciousness. Brain Connect. 2, 1–10 (2012).

    Article  PubMed  Google Scholar 

  134. Horovitz, S.G. et al. Decoupling of the brain's default mode network during deep sleep. Proc. Natl. Acad. Sci. USA 106, 11376–11381 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Spoormaker, V.I. et al. Development of a large-scale functional brain network during human non-rapid eye movement sleep. J. Neurosci. 30, 11379–11387 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Friston, K. Dynamic causal modeling and Granger causality Comments on: the identification of interacting networks in the brain using fMRI: model selection, causality and deconvolution. Neuroimage 58, 303–305 (2011).

    Article  PubMed  Google Scholar 

  137. David, O. et al. Identifying neural drivers with functional MRI: an electrophysiological validation. PLoS Biol. 6, 2683–2697 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Scannell, J.W., Burns, G.A., Hilgetag, C.C., O'Neil, M.A. & Young, M.P. The connectional organization of the cortico-thalamic system of the cat. Cereb. Cortex 9, 277–299 (1999).

    Article  CAS  PubMed  Google Scholar 

  139. Mclntosh, A.R. & Gonzalez-Lima, F. Structural equation modeling and its application to network analysis in functional brain imaging. Hum. Brain Mapp. 2, 2–22 (1994).

    Article  Google Scholar 

  140. Lohmann, G., Erfurth, K., Müller, K. & Turner, R. Critical comments on dynamic causal modelling. Neuroimage 59, 2322–2329 (2012).

    Article  PubMed  Google Scholar 

  141. Zhuang, J., LaConte, S., Peltier, S., Zhang, K. & Hu, X. Connectivity exploration with structural equation modeling: an fMRI study of bimanual motor coordination. Neuroimage 25, 462–470 (2005).

    Article  PubMed  Google Scholar 

  142. Goebel, R. Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magn. Reson. Imaging 21, 1251–1261 (2003).

    Article  PubMed  Google Scholar 

  143. Granger, C.W. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438 (1969).

    Article  Google Scholar 

  144. Sridharan, D., Levitin, D.J. & Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc. Natl. Acad. Sci. USA 105, 12569–12574 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Deshpande, G. & Hu, X. Investigating effective brain connectivity from fMRI data: past findings and current issues with reference to Granger causality analysis. Brain Connect. 2, 235–245 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Johnston, J.M. et al. Loss of resting interhemispheric functional connectivity after complete section of the corpus callosum. J. Neurosci. 28, 6453–6458 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Matsumoto, R. et al. Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain 127, 2316–2330 (2004).

    Article  PubMed  Google Scholar 

  148. Bohning, D.E. et al. Echoplanar BOLD fMRI of brain activation induced by concurrent transcranial magnetic stimulation. Invest. Radiol. 33, 336–340 (1998).

    Article  CAS  PubMed  Google Scholar 

  149. Ruff, C.C. et al. Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS-fMRI. Cereb. Cortex 18, 817–827 (2008).

    Article  PubMed  Google Scholar 

  150. Datta, A. et al. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulat. 2, 201–207 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from US National Institute of Mental Health (BRAINS R01MH094639 to M.P.M. and K23MH087770 to A.D.M.), the Stavros Niarchos Foundation (M.P.M.), the Brain and Behavior Research Foundation (R.C.C.) and the Leon Levy Foundation (C.K. and A.D.M.). J.T.V. receives funding from the London Institute for Mathematical Sciences HDTRA1-11-1-0048 and US National Institutes of Health R01ES017436. Additional support was provided by a gift from Joseph P. Healey to the Child Mind Institute (M.P.M.). We thank D. Lurie for his assistance in the preparation of the manuscript and references as well as Z. Shehzad, Z. Yang and S. Urchs for their helpful comments. We acknowledge our colleagues who allowed us to reproduce their figures.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stan Colcombe or Michael P Milham.

Ethics declarations

Competing interests

K.H. is a full time employee of Siemens Medical Solutions USA, and owns shares in Siemens, AG.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Craddock, R., Jbabdi, S., Yan, CG. et al. Imaging human connectomes at the macroscale. Nat Methods 10, 524–539 (2013). https://doi.org/10.1038/nmeth.2482

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2482

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing