Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

CLARITY for mapping the nervous system

A Corrigendum to this article was published on 27 September 2013

This article has been updated

With potential relevance for brain-mapping work, hydrogel-based structures can now be built from within biological tissue to allow subsequent removal of lipids without mechanical disassembly of the tissue. This process creates a tissue-hydrogel hybrid that is physically stable, that preserves fine structure, proteins and nucleic acids, and that is permeable to both visible-spectrum photons and exogenous macromolecules. Here we highlight relevant challenges and opportunities of this approach, especially with regard to integration with complementary methodologies for brain-mapping studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging of nervous system projections in the intact mouse brain with CLARITY.
Figure 2: Intact mouse brain molecular phenotyping and imaging with CLARITY.
Figure 3: CLARITY technology and instrumentation.

Change history

  • 20 June 2013

    In the version of this article initially published, several reference callouts in the text were wrong. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature advance online publication, doi:10.1038/nature12107 (10 April 2013).

  2. Petersen, C.C.H. The functional organization of the barrel cortex. Neuron 56, 339–355 (2007).

    CAS  Google Scholar 

  3. Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996).

    Article  CAS  Google Scholar 

  4. Deisseroth, K. Optogenetics and psychiatry: applications, challenges, and opportunities. Biol. Psychiatry 71, 1030–1032 (2012).

    Article  Google Scholar 

  5. Kasthuri, N. & Lichtman, J.W. The rise of the 'projectome'. Nat. Methods 4, 307–308 (2007).

    Article  CAS  Google Scholar 

  6. Nicholson, C. Diffusion in brain extracellular space. Brain 6, 1277–1340 (2008).

    Google Scholar 

  7. Cheong, W., Prahl, S. & Welch, A. A review of the optical properties of biological tissues. IEEE J. Quantum Electronics 26, 2166–2185 (1990).

    Article  Google Scholar 

  8. Helmchen, F. & Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2, 932–940 (2005).

    Article  CAS  Google Scholar 

  9. Rauschning, W. Surface cryoplanning: a technique for clinical anatomical correlations. Uppsala J. Med. Sci. 91, 251–255 (1986).

    Article  CAS  Google Scholar 

  10. Toga, A.W., Ambach, K., Quinn, B., Hutchin, M. & Burton, J.S. Postmortem anatomy from cryosectioned whole human brain. J. Neurosci. Methods 54, 239–252 (1994).

    Article  CAS  Google Scholar 

  11. Ewald, A.J., McBride, H., Reddington, M., Fraser, S.E. & Kerschmann, R. Surface imaging microscopy, an automated method for visualizing whole embryo samples in three dimensions at high resolution. Dev. Dyn. 225, 369–375 (2002).

    Article  Google Scholar 

  12. McCormick, B.H. et al. Construction of anatomically correct models of mouse brain networks. Neurocomputing 58–60, 379–386 (2004).

    Article  Google Scholar 

  13. Li, A. et al. Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science 330, 1404–1408 (2010).

    Article  CAS  Google Scholar 

  14. Tsai, P. et al. All-optical histology using ultrashort laser pulses. Neuron 39, 27–41 (2003).

    Article  CAS  Google Scholar 

  15. Ragan, T. et al. Serial two-photon tomography for automated ex vivo mouse brain imaging. Nat. Methods 9, 255–258 (2012).

    Article  CAS  Google Scholar 

  16. Denk, W. & Horstmann, H. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol. 2, e329 (2004).

    Article  Google Scholar 

  17. Micheva, K.D. & Smith, S.J. Array tomography: a new tool for imaging the molecular architecture and ultrastructure of neural circuits. Neuron 55, 25–36 (2007).

    Article  CAS  Google Scholar 

  18. Osten, P. & Margrie, T.W. Mapping brain circuitry with a light microscope. Nat. Methods 10, 515–523 (2013).

    Article  CAS  Google Scholar 

  19. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  Google Scholar 

  20. Tsai, P. et al. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of cell nuclei and microvessels. J. Neurosci. 18, 14553–14570 (2009).

    Article  Google Scholar 

  21. Kleinfeld, D. et al. Large-scale automated histology in the pursuit of connectomes. J. Neurosci. 31, 16125–16138 (2011).

    Article  CAS  Google Scholar 

  22. Bock, D.D. et al. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471, 177–182 (2011).

    Article  CAS  Google Scholar 

  23. Briggman, K.L., Helmstaedter, M. & Denk, W. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471, 183–188 (2011).

    Article  CAS  Google Scholar 

  24. Dodt, H., Leischner, U. & Schierloh, A. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4, 331–336 (2007).

    Article  CAS  Google Scholar 

  25. Ertürk, A., Mauch, C., Hellal, F. & Förstner, F. Three-dimensional imaging of the unsectioned adult spinal cord to assess axon regeneration and glial responses after injury. Nat. Med. 18, 166–171 (2012).

    Article  Google Scholar 

  26. Hama, H. et al. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat. Neurosci. 14, 1481–1488 (2011).

    Article  CAS  Google Scholar 

  27. Keller, P.J. et al. Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat. Methods 7, 637–642 (2010).

    Article  CAS  Google Scholar 

  28. Truong, T.V., Supatto, W., Koos, D.S., Choi, J.M. & Fraser, S.E. Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat. Methods 8, 757–760 (2011).

    Article  CAS  Google Scholar 

  29. Tomer, R., Khairy, K., Amat, F. & Keller, P.J. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat. Methods 9, 755–763 (2012).

    Article  CAS  Google Scholar 

  30. Krzic, U., Gunther, S., Saunders, T.E., Streichan, S.J. & Hufnagel, L. Multiview light-sheet microscope for rapid in toto imaging. Nat. Methods 9, 730–733 (2012).

    Article  CAS  Google Scholar 

  31. Keller, P.J., Schmidt, A.D., Wittbrodt, J. & Stelzer, E.H.K. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322, 1065–1069 (2008).

    Article  CAS  Google Scholar 

  32. Planchon, T.A. et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8, 417–423 (2011).

    Article  CAS  Google Scholar 

  33. Dani, A., Huang, B., Bergan, J., Dulac, C. & Zhuang, X. Superresolution imaging of chemical synapses in the brain. Neuron 68, 843–856 (2010).

    Article  CAS  Google Scholar 

  34. Micheva, K.D., Busse, B., Weiler, N.C., O'Rourke, N. & Smith, S.J. Single-synapse analysis of a diverse synapse population: proteomic imaging methods and markers. Neuron 68, 639–653 (2010).

    Article  CAS  Google Scholar 

  35. Wählby, C. & Erlandsson, F. Sequential immunofluorescence staining and image analysis for detection of large numbers of antigens in individual cell nuclei. Cytometry 47, 32–41 (2002).

    Article  Google Scholar 

  36. Feinberg, E.H. et al. GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57, 353–363 (2008).

    Article  CAS  Google Scholar 

  37. Wickersham, I.R. & Feinberg, E.H. New technologies for imaging synaptic partners. Curr. Opin. Neurobiol. 22, 121–127 (2012).

    Article  CAS  Google Scholar 

  38. Gordon, M.D. & Scott, K. Motor control in a Drosophila taste circuit. Neuron 61, 373–384 (2009).

    Article  CAS  Google Scholar 

  39. Kim, J. et al. mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nat. Methods 9, 96–102 (2012).

    Article  CAS  Google Scholar 

  40. Wickersham, I. et al. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat. Methods 4, 47–49 (2007).

    Article  CAS  Google Scholar 

  41. Miyamichi, K. et al. Cortical representations of olfactory input by trans-synaptic tracing. Nature 472, 191–196 (2011).

    Article  CAS  Google Scholar 

  42. Liu, X. et al. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 381–385 (2012).

    Article  CAS  Google Scholar 

  43. Guenthner, C.J., Miyamichi, K., Yang, H., Heller, H.C. & Luo, L. Permanent genetic access to transiently active neurons using targeted recombination in active populations (TRAP). Neuron (in the press).

  44. Godement, P., Vanselow, J., Thanos, S. & Bonhoeffer, F. A study in developing visual systems with a new method of staining neurones and their processes in fixed tissue. Development 101, 697–713 (1987).

    CAS  PubMed  Google Scholar 

  45. Helmstaedter, M. Cellular-resolution connectomics: challenges of dense neural circuit reconstruction. Nat. Methods 10, 501–507 (2013).

    Article  CAS  Google Scholar 

  46. Dombeck, D.A., Graziano, M.S. & Tank, D.W. Functional clustering of neurons in motor cortex determined by cellular resolution imaging in awake behaving mice. J. Neurosci. 29, 13751–13760 (2009).

    Article  CAS  Google Scholar 

  47. Ahrens, M.B. et al. Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 485, 471–477 (2012).

    Article  CAS  Google Scholar 

  48. Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013).

    Article  CAS  Google Scholar 

  49. Ahrens, M.B., Orger, M.B., Robson, D.N., Li, J.M. & Keller, P.J. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10, 413–420 (2013).

    Article  CAS  Google Scholar 

  50. Alivisatos, P. et al. The brain activity map. Science 339, 1284–1285 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge all members of the Deisseroth laboratory for discussions and support. This work was funded by a US National Institutes of Health Director's Transformative Research Award (TR01) to K.D. from the National Institute of Mental Health, as well as by the National Science Foundation, the Simons Foundation, the President and Provost of Stanford University, and the Howard Hughes Medical Institute. K.D. is also funded by the National Institute on Drug Abuse and the Defense Advanced Research Projects Agency Reorganization and Plasticity to Accelerate Injury Recovery program, and the Wiegers, Snyder, Reeves, Gatsby, and Yu Foundations. K.C. is supported by the Burroughs Wellcome Fund Career Award at the Scientific Interface.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwanghun Chung or Karl Deisseroth.

Ethics declarations

Competing interests

K.C. and K.D. have disclosed these findings to the Stanford Office of Technology Licensing, which is filing a patent application to ensure broad public use of the methods in microscopy systems and for studying disease mechanisms and treatments. All protocols and methods remain freely available for academic and non-profit research in perpetuity, and supported by the authors, through the CLARITY website (http://clarityresourcecenter.org/).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, K., Deisseroth, K. CLARITY for mapping the nervous system. Nat Methods 10, 508–513 (2013). https://doi.org/10.1038/nmeth.2481

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2481

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing