Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Why not connectomics?

Opinions diverge on whether mapping the synaptic connectivity of the brain is a good idea. Here we argue that albeit their limitations, such maps will reveal essential characteristics of neural circuits that would otherwise be inaccessible.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Potential results from two approaches to studying circuit connectivity.
Figure 2: Two types of wiring diagrams.

References

  1. 1

    Markram, H. et al. A Report to the European Commission. http://www.humanbrainproject.eu/files/HBP_flagship.pdf (April 2012).

    Google Scholar 

  2. 2

    Collins, F. & Prabhakar, A. The White House Blog http://www.whitehouse.gov/blog/2013/04/02/brain-initiative-challenges-researchers-unlock-mysteries-human-mind (2 April 2013).

    Google Scholar 

  3. 3

    Pautasso, M. Sustainability 4, 3234–3247 (2012).

    Article  Google Scholar 

  4. 4

    Lichtman, J.W. & Denk, W. Science 334, 618–623 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Masland, R.H. Curr. Opin. Neurobiol. 11, 431–436 (2001).

    CAS  Article  Google Scholar 

  6. 6

    Lichtman, J.W. & Sanes, J.R. Curr. Opin. Neurobiol. 18, 346–353 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Diamond, J.S. Nat. Neurosci. 5, 291–292 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Oláh, S. et al. Nature 461, 1278–1281 (2009).

    Article  Google Scholar 

  9. 9

    Bargmann, C.I. Bioessays 34, 458–465 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Kerchner, G. & Nicoll, R. Nat. Rev. Neurosci. 9, 813–825 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Zador, A.M. et al. PLoS Biol. 10, e1001411 (2012).

    CAS  Article  Google Scholar 

  12. 12

    Butcher, A.J. et al. J. Biol. Chem. 286, 11506–11518 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Jahromi, S.S. & Atwood, H.L. J. Cell Biol. 63, 599–613 (1974).

    CAS  Article  Google Scholar 

  14. 14

    Lichtman, J.W. & Colman, H. Neuron 25, 269–278 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Weimann, J.M. & Marder, E. Curr. Biol. 4, 896–902 (1994).

    CAS  Article  Google Scholar 

  16. 16

    Lu, J., Tapia, J.C., White, O.L. & Lichtman, J.W. PLoS Biol. 7, 13 (2009).

    Google Scholar 

  17. 17

    Sherman, S.M. & Guillery, R.W. J. Neurophysiol. 76, 1367–1395 (1996).

    CAS  Article  Google Scholar 

  18. 18

    Seung, H.S. Neuron 62, 17–29 (2009).

    CAS  Article  Google Scholar 

  19. 19

    Song, S., Sjöström, P.J., Reigl, M., Nelson, S. & Chklovskii, D.B. PLoS Biol. 3, e68 (2005).

    Article  Google Scholar 

  20. 20

    White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. Phil. Trans. R. Soc. Lond. B Biol. Sci. 314, 1–340 (1986).

    CAS  Article  Google Scholar 

  21. 21

    Sporns, O., Tononi, G. & Kötter, R. PLoS Comput. Biol. 1, e42 (2005).

    Article  Google Scholar 

  22. 22

    Chalfie, M., Sulston, J.E., Thomson, J.N. & White, G. J. Neurosci. 5, 956–964 (1985).

    CAS  Article  Google Scholar 

  23. 23

    Swinford, S. The Sunday Times of London (11 June 2006).

    Google Scholar 

  24. 24

    Anderson, J.R. et al. Mol. Vis. 17, 355–379 (2011).

    PubMed  PubMed Central  Google Scholar 

  25. 25

    Bock, D.D. et al. Nature 471, 177–182 (2011).

    CAS  Article  Google Scholar 

  26. 26

    Briggman, K.L., Helmstaedter, M. & Denk, W. Nature 471, 183–188 (2011).

    CAS  Article  Google Scholar 

  27. 27

    Freed, M.A. & Sterling, P. J. Neurosci. 8, 2303–2320 (1988).

    CAS  Article  Google Scholar 

  28. 28

    Semon, R. W. & Simon, L. The Mneme. (G. Allen & Unwin Ltd., 1921).

    Google Scholar 

  29. 29

    Helmstaedter, M. Nat. Methods 10, 501–507 (2013).

    CAS  Article  Google Scholar 

  30. 30

    Kaynig, V. & Vazquez-Reina, A. IEEE Trans. Med. Imaging 1, 1–7 (2012).

    Google Scholar 

  31. 31

    Lein, E.S. et al. Nature 445, 168–176 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Micheva, K.D., Busse, B., Weiler, N.C., O'Rourke, N. & Smith, S.J. Neuron 68, 639–653 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Our work was supported by a Conte Center grant (US National Institute of Mental Health), the US National Institutes of Health, the Gatsby Charitable Trust and Center for Brain Science Harvard University. We thank D. Rodrigues for use of his rendering of his Twitter network and J. De Carlos for Cajal's drawing of the retina.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Joshua L Morgan or Jeff W Lichtman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morgan, J., Lichtman, J. Why not connectomics?. Nat Methods 10, 494–500 (2013). https://doi.org/10.1038/nmeth.2480

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing