Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gene-pair expression signatures reveal lineage control

Abstract

The distinct cell types of multicellular organisms arise owing to constraints imposed by gene regulatory networks on the collective change of gene expression across the genome, creating self-stabilizing expression states, or attractors. We curated human expression data comprising 166 cell types and 2,602 transcription-regulating genes and developed a data-driven method for identifying putative determinants of cell fate built around the concept of expression reversal of gene pairs, such as those participating in toggle-switch circuits. This approach allows us to organize the cell types into their ontogenic lineage relationships. Our method identifies genes in regulatory circuits that control neuronal fate, pluripotency and blood cell differentiation, and it may be useful for prioritizing candidate factors for direct conversion of cell fate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Gene-pair expression-reversal analysis.
Figure 2: Reversal participation analysis in ESCs.
Figure 3: Reversal participation analysis of a candidate gene set for neuronal specification.
Figure 4: Identification of reversal pairs in lineage splits of the blood system.
Figure 5: Lineage relationships based on gene-pair expression reversals.

Similar content being viewed by others

References

  1. Alberts, B. et al. Cells and genomes. in Molecular Biology of the Cell 3rd edn. Ch. 22 (Garland Science, New York, 1994).

  2. Zhou, J.X. & Huang, S. Understanding gene circuits at cell-fate branch points for rational cell reprogramming. Trends Genet. 27, 55–62 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Kauffman, S.A. Control circuits for determination and transdetermination. Science 181, 310–318 (1973).

    Article  CAS  PubMed  Google Scholar 

  4. Kauffman, S.A., Shymko, R.M. & Trabert, K. Control of sequential compartment formation in Drosophila. Science 199, 259–270 (1978).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, P. et al. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1. Proc. Natl. Acad. Sci. USA 96, 8705–8710 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang, S. et al. Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev. Biol. 305, 695–713 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Geman, D., d'Avignon, C., Naiman, D.Q. & Winslow, R.L. Classifying gene expression profiles from pairwise mRNA comparisons. Stat. Appl. Genet. Mol. Biol. 3, Article 19 (2004).

    Article  Google Scholar 

  8. Tan, A.C. et al. Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics 21, 3896–3904 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Price, N.D. et al. Highly accurate two-gene classifier for differentiating gastrointestinal stromal tumors and leiomyosarcomas. Proc. Natl. Acad. Sci. USA 104, 3414–3419 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Waddington, C.H. The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology (Allen & Unwin, London, 1957).

  11. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. The ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

  13. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grass, J.A. et al. GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proc. Natl. Acad. Sci. USA 100, 8811–8816 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Laslo, P. et al. Multilineage transcriptional priming and determination of alternate hematopoietic cell fates. Cell 126, 755–766 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Hu, M. et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev. 11, 774–785 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, J.X., Brusch, L. & Huang, S. Predicting pancreas cell fate decisions and reprogramming with a hierarchical multi-attractor model. PLoS ONE 6, e14752 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hosoya, T. et al. GATA-3 is required for early T lineage progenitor development. J. Exp. Med. 206, 2987–3000 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miranda-Saavedra, D. & Göttgens, B. Transcriptional regulatory networks in haematopoiesis. Curr. Opin. Genet. Dev. 18, 530–535 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Swiers, G., Patient, R. & Loose, M. Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Dev. Biol. 294, 525–540 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Feinberg, M.W. et al. The Kruppel-like factor KLF4 is a critical regulator of monocyte differentiation. EMBO J. 26, 4138–4148 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoang, T. et al. Opposing effects of the basic helix-loop-helix transcription factor SCL on erythroid and monocytic differentiation. Blood 87, 102–111 (1996).

    CAS  PubMed  Google Scholar 

  24. Ma, C. & Staudt, L.M. LAF-4 encodes a lymphoid nuclear protein with transactivation potential that is homologous to AF-4, the gene fused to MLL in t(4;11) leukemias. Blood 87, 734–745 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Nagasawa, M., Schmidlin, H., Hazekamp, M.G., Schotte, R. & Blom, B. Development of human plasmacytoid dendritic cells depends on the combined action of the basic helix-loop-helix factor E2-2 and the Ets factor Spi-B. Eur. J. Immunol. 38, 2389–2400 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Hagman, J., Belanger, C., Travis, A., Turck, C.W. & Grosschedl, R. Cloning and functional characterization of early B-cell factor, a regulator of lymphocyte-specific gene expression. Genes Dev. 7, 760–773 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Zandi, S. et al. EBF1 is essential for B-lineage priming and establishment of a transcription factor network in common lymphoid progenitors. J. Immunol. 181, 3364–3372 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Lukin, K. et al. A dose-dependent role for EBF1 in repressing non-B-cell-specific genes. Eur. J. Immunol. 41, 1787–1793 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dontje, W. et al. Delta-like1-induced Notch1 signaling regulates the human plasmacytoid dendritic cell versus T-cell lineage decision through control of GATA-3 and Spi-B. Blood 107, 2446–2452 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Rosa, A. et al. The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation. Proc. Natl. Acad. Sci. USA 104, 19849–19854 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wei, G. et al. Genome-wide analyses of transcription factor GATA3-mediated gene regulation in distinct T cell types. Immunity 35, 299–311 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Treiber, T. et al. Early B cell factor 1 regulates B cell gene networks by activation, repression, and transcription- independent poising of chromatin. Immunity 32, 714–725 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Duarte, N.C. et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc. Natl. Acad. Sci. USA 104, 1777–1782 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pardo, M. et al. An expanded Oct4 interaction network: implications for stem cell biology, development, and disease. Cell Stem Cell 6, 382–395 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kashyap, V. et al. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev. 18, 1093–1108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, J.-Y. et al. Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog. Mol. Cell Biol. 27, 8748–8759 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sinkkonen, L. et al. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 15, 259–267 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ito, S. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Neph, S. et al. Circuitry and dynamics of human transcription factor regulatory networks. Cell 150, 1274–1286 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wu, Z. & Irizarry, R.A. Stochastic models inspired by hybridization theory for short oligonucleotide arrays. J. Comput. Biol. 12, 882–893 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Nishikawa, S.I. et al. Progressive lineage analysis by cell sorting and culture identifies FLK1+VE-cadherin+ cells at a diverging point of endothelial and hemopoietic lineages. Development 125, 1747–1757 (1998).

    CAS  PubMed  Google Scholar 

  43. Allen, C.D.C., Okada, T. & Cyster, J.G. Germinal-center organization and cellular dynamics. Immunity 27, 190–202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Burkard, R., DellAmico, M. & Martello, S. Assignment Problems (SIAM, Philadelphia, 2009).

  45. McLean, C.Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Bressler (Institute for Systems Biology) for providing the interactive landscape visualization for the web page, T. Sauter and T. Schilling (University of Luxembourg) for the use of their computational resource, D. Galas and C. Carlberg for useful discussions and suggestions and E. Friederich and N. Vlassis for reading the manuscript; and we gratefully acknowledge these sources of funding: the Academy of Finland, project no. 132877 (M.N.), the University of Luxembourg, Tekes FiDiPro Program (S.A.K.), Alberta Innovates the Future (S.H.) and US National Institutes of Health–National Institute of General Medical Sciences grants R01GM072855 and P50GMO76547 (I.S.).

Author information

Authors and Affiliations

Authors

Contributions

M.H., M.N., R. Kramer and I.S. designed the gene-pair analysis, and M.H. and R. Kramer performed the analysis. M.H. and A.W.-B. designed the gene curation pipeline, and M.H., A.W.-B. and L.S. curated the genes. M.N., M.H., J.X.Z., S.A.K., S.H. and I.S. designed the clustering experiments and visualization of cell type dissimilarities. M.N. designed the branch-point placement algorithm. M.H. and M.N. compiled the ChIP-seq validations. M.H. and S.H. designed the reversal participation analysis. R. Kreisberg, M.H., M.N. and I.S. designed the content of the online resource. M.H., M.N., R. Kramer, S.H. and I.S. wrote the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to Ilya Shmulevich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13, Supplementary Tables 4 and 6 and Supplementary Results (PDF 2503 kb)

Supplementary Table 1

Cell type and tissue ontology terms (XLS 50 kb)

Supplementary Table 2

Microarray samples mapped to ontology terms (XLS 247 kb)

Supplementary Table 3

The order of cell types as it appears in the heat maps presented (XLS 29 kb)

Supplementary Table 5

Functional evidence for a role in transcription regulation found in the gene-set curation (XLS 306 kb)

Supplementary Table 7

Identification of candidate toggle pairs (XLS 69 kb)

Supplementary Table 8

Rank-based differential expression analysis comparison using RCoS (XLS 710 kb)

Supplementary Table 9

Rank-based differential expression analysis comparison using RDAM (XLS 245 kb)

Supplementary Table 10

Public ChIP-seq data sets used (XLS 23 kb)

Supplementary Table 11

Genomic region enrichment results for GATA1 ChIP-seq data (XLS 1413 kb)

Supplementary Table 12

Genomic region enrichment results for TAL1 ChIP-seq data (XLS 713 kb)

Supplementary Table 13

Genomic region enrichment results for SPI1 ChIP-seq data (XLS 1936 kb)

Supplementary Table 14

Genomic region enrichment results for EBF1 ChIP-seq data (XLS 969 kb)

Supplementary Table 15

Genomic region enrichment results for GATA3 ChIP-seq data (XLS 3041 kb)

Supplementary Table 16

Mouse knockout phenotypes of Gata1, Tal1, Sfpi1, Ebf1 and Gata3 (XLS 114 kb)

Supplementary Table 17

Additional microarray data used for validation. (XLS 97 kb)

Supplementary Software

Online data resource and tool TREL. The online data resource and interactive tool (http://trel.systemsbiology.net/) encompassing pairwise comparisons of the genes and cell types presented in this article is available to explore transcriptome diversity in metazoa; this resource accompanied by a user guide and video tutorial. (ZIP 4901 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinäniemi, M., Nykter, M., Kramer, R. et al. Gene-pair expression signatures reveal lineage control. Nat Methods 10, 577–583 (2013). https://doi.org/10.1038/nmeth.2445

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2445

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing