A simple tool to improve pluripotent stem cell differentiation

Article metrics

Abstract

We describe a method to help overcome restrictions on the differentiation propensities of human pluripotent stem cells. Culturing pluripotent stem cells in dimethylsulfoxide (DMSO) activates the retinoblastoma protein, increases the proportion of cells in the early G1 phase of the cell cycle and, in more than 25 embryonic and induced pluripotent stem cell lines, improves directed differentiation into multiple lineages. DMSO treatment also improves differentiation into terminal cell types in several cell lines.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: DMSO treatment enhances differentiation in hESC and hiPSC lines.
Figure 2: DMSO treatment improves differentiation into all germ layers across multiple hESC and hiPSC lines.
Figure 3: DMSO-treated cells have activated retinoblastoma protein (Rb) and an increased proportion of early G1-stage cells.

References

  1. 1

    Osafune, K. et al. Nat. Biotechnol. 26, 313–315 (2008).

  2. 2

    Bock, C. et al. Cell 144, 439–452 (2011).

  3. 3

    Smith, A.G. Annu. Rev. Cell Dev. Biol. 17, 435–462 (2001).

  4. 4

    Orford, K.W. & Scadden, D.T. Nat. Rev. Genet. 9, 115–128 (2008).

  5. 5

    Conklin, J.F. & Sage, J. J. Cell Biochem. 108, 1023–1030 (2009).

  6. 6

    Ben-David, U. & Benvenisty, N. Nat. Rev. Cancer 11, 268–277 (2011).

  7. 7

    Hartwell, L.H. & Weinert, T.A. Science 246, 629–634 (1989).

  8. 8

    Murray, A.W. & Kirschner, M.W. Nature 339, 275–280 (1989).

  9. 9

    Pardee, A.B. Science 246, 603–608 (1989).

  10. 10

    Weinberg, R.A. Cell 81, 323–330 (1995).

  11. 11

    Chen, S. et al. Nat. Chem. Biol. 5, 258–265 (2009).

  12. 12

    Sawai, M., Takase, K., Teraoka, H. & Tsukada, K. Exp. Cell Res. 187, 4–10 (1990).

  13. 13

    Teraoka, H., Mikoshiba, M., Takase, K., Yamamoto, K. & Tsukada, K. Exp. Cell Res. 222, 218–224 (1996).

  14. 14

    Ponzio, G. et al. Oncogene 17, 1159–1166 (1998).

  15. 15

    Fiore, M. & Degrassi, F. Exp. Cell Res. 251, 102–110 (1999).

  16. 16

    Yu, Z.W. & Quinn, P.J. Biosci. Rep. 14, 259–281 (1994).

  17. 17

    Pal, R., Mamidi, M., Das, A. & Bhonde, R. Arch. Toxicol. 86, 651–661 (2012).

  18. 18

    D'Amour, K.A. et al. Nat. Biotechnol. 24, 1392–1401 (2006).

  19. 19

    Kroon, E. et al. Nat. Biotechnol. 26, 443–452 (2008).

  20. 20

    Borowiak, M. & Melton, D.A. Curr. Opin. Cell Biol. 21, 727–732 (2009).

  21. 21

    Cowan, C.A. et al. N. Engl. J. Med. 350, 1353–1356 (2004).

  22. 22

    Takahashi, K. et al. Cell 131, 861–872 (2007).

  23. 23

    Chen, P.L., Scully, P., Shew, J.Y., Wang, J.Y. & Lee, W.H. Cell 58, 1193–1198 (1989).

  24. 24

    Sosa-García, B. et al. PLoS ONE 5, e13954 (2010).

  25. 25

    Ruiz, S. et al. Curr. Biol. 21, 45–52 (2011).

  26. 26

    Sela, Y., Molotski, N., Golan, S., Itskovitz-Eldor, J. & Soen, Y. Stem Cells 30, 1097–1108 (2012).

  27. 27

    Jacks, T. et al. Nature 359, 295–300 (1992).

  28. 28

    Slack, R.S. et al. J. Cell Biol. 129, 779–788 (1995).

  29. 29

    Nguyen, D.X., Baglia, L.A., Huang, S.-M., Baker, C.M. & McCance, D.J. EMBO J. 23, 1609–1618 (2004).

  30. 30

    Watanabe, K. et al. Nat. Biotechnol. 25, 681–686 (2007).

  31. 31

    Boulting, G.L. et al. Nat. Biotechnol. 29, 279–286 (2011).

  32. 32

    Maehr, R. et al. Proc. Natl. Acad. Sci. USA 106, 15768–15773 (2009).

  33. 33

    Chambers, S.M. et al. Nat. Biotechnol. 27, 275–280 (2009).

  34. 34

    Zhang, P. et al. Blood 111, 1933–1941 (2008).

  35. 35

    Lian, X. et al. Proc. Natl. Acad. Sci. USA 109, E1848–E1857 (2012).

  36. 36

    Rezania, A. et al. Diabetes 60, 239–247 (2011).

Download references

Acknowledgements

We thank E. Scadden for her excellent technical support; R. Maehr, P. Makhijani and J. Millman of Harvard University for providing many of the hiPSC lines; K. Lam for assistance with the Cellomics high-content screening system; and A. Meissner, K. Eggan, D. Cohen, R. Maehr, J. Rivera-Feliciano, B. Blum, J. Sneddon and Q. Peterson for their comments on the manuscript. This work was supported by the Harvard Stem Cell Institute, the Howard Hughes Medical Institute, the Leona M. and Harry B. Helmsley Charitable Trust, NovoNordisk and the US National Institutes of Health (1R24DK092758 and 1U01HL10040804).

Author information

S.C. and D.A.M. conceived and designed the research, analyzed the data and wrote the manuscript. S.C., F.W.P., C.H., A.K. and A.R. performed the experiments.

Correspondence to Douglas A Melton.

Ethics declarations

Competing interests

A.R. is an employee of BetaLogics, a division of Janssen Research & Development that is developing commercial products based upon pancreatic differentiation of human embryonic stem cells.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Tables 1 and 2 and Supplementary Note (PDF 2913 kb)

DMSO treatment of hESCs generates functional cardiomyocytes (video 1 of 4)

DMSO treatment of the HUES6 cell line enhances the potential for cardiomyocyte differentiation and induces functionality by promoting contractile properties. (MOV 2020 kb)

DMSO treatment of hESCs generates functional cardiomyocytes (video 2 of 4)

DMSO treatment of the HUES6 cell line enhances the potential for cardiomyocyte differentiation and induces functionality by promoting contractile properties. (MOV 13785 kb)

DMSO treatment of hESCs generates functional cardiomyocytes (video 3 of 4)

DMSO treatment of the HUES6 cell line enhances the potential for cardiomyocyte differentiation and induces functionality by promoting contractile properties. (MOV 6905 kb)

DMSO treatment of hESCs generates functional cardiomyocytes (video 4 of 4)

DMSO treatment of the HUES6 cell line enhances the potential for cardiomyocyte differentiation and induces functionality by promoting contractile properties. (MOV 5436 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chetty, S., Pagliuca, F., Honore, C. et al. A simple tool to improve pluripotent stem cell differentiation. Nat Methods 10, 553–556 (2013) doi:10.1038/nmeth.2442

Download citation

Further reading