Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Absolute quantification of transcription factors during cellular differentiation using multiplexed targeted proteomics

Abstract

The cellular abundance of transcription factors (TFs) is an important determinant of their regulatory activities. Deriving TF copy numbers is therefore crucial to understanding how these proteins control gene expression. We describe a sensitive selected reaction monitoring–based mass spectrometry assay that allowed us to determine the copy numbers of up to ten proteins simultaneously. We applied this approach to profile the absolute levels of key TFs, including PPARγ and RXRα, during terminal differentiation of mouse 3T3-L1 pre-adipocytes. Our analyses revealed that individual TF abundance differs dramatically (from 250 to >300,000 copies per nucleus) and that their dynamic range during differentiation can vary up to fivefold. We also formulated a DNA binding model for PPARγ based on TF copy number, binding energetics and local chromatin state. This model explains the increase in PPARγ binding sites during the final differentiation stage that occurs despite a concurrent saturation in PPARγ copy number.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Workflow for the absolute quantification of TFs in 3T3-L1 cells.
Figure 2: Summary of RXRα and PPARγ levels quantified by SRM.
Figure 3: Quantitative modeling of genome-wide PPARγ DNA binding.
Figure 4: Properties of the SH-quant tag variants.
Figure 5: Simultaneous monitoring of the nuclear abundance of ten TFs during terminal adipogenesis via spiking of in vitro–expressed full-length TFs.

References

  1. Simicevic, J. & Deplancke, B. DNA-centered approaches to characterize regulatory protein-DNA interaction complexes. Mol. Biosyst. 6, 462–468 (2010).

    Article  CAS  Google Scholar 

  2. Kim, H.D., Shay, T., O'Shea, E.K. & Regev, A. Transcriptional regulatory circuits: predicting numbers from alphabets. Science 325, 429–432 (2009).

    Article  CAS  Google Scholar 

  3. Bussemaker, H.J., Foat, B.C. & Ward, L.D. Predictive modeling of genome-wide mRNA expression: from modules to molecules. Annu. Rev. Biophys. Biomol. Struct. 36, 329–347 (2007).

    Article  CAS  Google Scholar 

  4. Segal, E. & Widom, J. From DNA sequence to transcriptional behaviour: a quantitative approach. Nat. Rev. Genet. 10, 443–456 (2009).

    Article  CAS  Google Scholar 

  5. Stormo, G.D. & Zhao, Y. Determining the specificity of protein-DNA interactions. Nat. Rev. Genet. 11, 751–760 (2010).

    Article  CAS  Google Scholar 

  6. Biggin, M.D. Animal transcription networks as highly connected, quantitative continua. Dev. Cell 21, 611–626 (2011).

    Article  CAS  Google Scholar 

  7. Vaquerizas, J.M., Kummerfeld, S.K., Teichmann, S.A. & Luscombe, N.M. A census of human transcription factors: function, expression and evolution. Nat. Rev. Genet. 10, 252–263 (2009).

    Article  CAS  Google Scholar 

  8. Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W. & Gygi, S.P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. USA 100, 6940–6945 (2003).

    Article  CAS  Google Scholar 

  9. Picotti, P., Bodenmiller, B., Mueller, L.N., Domon, B. & Aebersold, R. Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138, 795–806 (2009).

    Article  CAS  Google Scholar 

  10. Picotti, P. et al. A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature 494, 266–270 (2013).

    Article  CAS  Google Scholar 

  11. Kuster, B., Schirle, M., Mallick, P. & Aebersold, R. Scoring proteomes with proteotypic peptide probes. Nat. Rev. Mol. Cell Biol. 6, 577–583 (2005).

    Article  CAS  Google Scholar 

  12. Brun, V. et al. Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol. Cell Proteomics 6, 2139–2149 (2007).

    Article  CAS  Google Scholar 

  13. Hanke, S., Besir, H., Oesterhelt, D. & Mann, M. Absolute SILAC for accurate quantitation of proteins in complex mixtures down to the attomole level. J. Proteome Res. 7, 1118–1130 (2008).

    Article  CAS  Google Scholar 

  14. Stergachis, A.B., MacLean, B., Lee, K., Stamatoyannopoulos, J.A. & MacCoss, M.J. Rapid empirical discovery of optimal peptides for targeted proteomics. Nat. Methods 8, 1041–1043 (2011).

    Article  CAS  Google Scholar 

  15. Zeiler, M., Straube, W.L., Lundberg, E., Uhlen, M. & Mann, M. A protein epitope signature tag (PrEST) library allows SILAC-based absolute quantification and multiplexed determination of protein copy numbers in cell lines. Mol. Cell Proteomics 11, O111.009613 (2012).

    Article  Google Scholar 

  16. Pratt, J.M. et al. Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat. Protoc. 1, 1029–1043 (2006).

    Article  CAS  Google Scholar 

  17. Holzmann, J., Pichler, P., Madalinski, M., Kurzbauer, R. & Mechtler, K. Stoichiometry determination of the MP1-p14 complex using a novel and cost-efficient method to produce an equimolar mixture of standard peptides. Anal. Chem. 81, 10254–10261 (2009).

    Article  CAS  Google Scholar 

  18. Singh, S., Springer, M., Steen, J., Kirschner, M.W. & Steen, H. FLEXIQuant: a novel tool for the absolute quantification of proteins, and the simultaneous identification and quantification of potentially modified peptides. J. Proteome Res. 8, 2201–2210 (2009).

    Article  CAS  Google Scholar 

  19. Wepf, A., Glatter, T., Schmidt, A., Aebersold, R. & Gstaiger, M. Quantitative interaction proteomics using mass spectrometry. Nat. Methods 6, 203–205 (2009).

    Article  CAS  Google Scholar 

  20. Proc, J.L. et al. A quantitative study of the effects of chaotropic agents, surfactants, and solvents on the digestion efficiency of human plasma proteins by trypsin. J. Proteome Res. 9, 5422–5437 (2010).

    Article  CAS  Google Scholar 

  21. Kuhn, E. et al. Interlaboratory evaluation of automated, multiplexed peptide immunoaffinity enrichment coupled to multiple reaction monitoring mass spectrometry for quantifying proteins in plasma. Mol. Cell Proteomics 11, M111.013854 (2012).

    Article  Google Scholar 

  22. Ahmed, M., Neville, M.J., Edelmann, M.J., Kessler, B.M. & Karpe, F. Proteomic analysis of human adipose tissue after rosiglitazone treatment shows coordinated changes to promote glucose uptake. Obesity (Silver Spring) 18, 27–34 (2010).

    Article  CAS  Google Scholar 

  23. Molina, H. et al. Temporal profiling of the adipocyte proteome during differentiation using a five-plex SILAC based strategy. J. Proteome Res. 8, 48–58 (2009).

    Article  CAS  Google Scholar 

  24. Mirzaei, H., McBee, J.K., Watts, J. & Aebersold, R. Comparative evaluation of current peptide production platforms used in absolute quantification in proteomics. Mol. Cell Proteomics 7, 813–823 (2008).

    Article  CAS  Google Scholar 

  25. Dupuis, A., Hennekinne, J.A., Garin, J. & Brun, V. Protein Standard Absolute Quantification (PSAQ) for improved investigation of staphylococcal food poisoning outbreaks. Proteomics 8, 4633–4636 (2008).

    Article  CAS  Google Scholar 

  26. Nielsen, R. et al. Genome-wide profiling of PPARγ:RXR and RNA polymerase II occupancy reveals temporal activation of distinct metabolic pathways and changes in RXR dimer composition during adipogenesis. Genes Dev. 22, 2953–2967 (2008).

    Article  CAS  Google Scholar 

  27. Kaplan, T. et al. Quantitative models of the mechanisms that control genome-wide patterns of transcription factor binding during early Drosophila development. PLoS Genet. 7, e1001290 (2011).

    Article  CAS  Google Scholar 

  28. Segal, E., Raveh-Sadka, T., Schroeder, M., Unnerstall, U. & Gaul, U. Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature 451, 535–540 (2008).

    Article  CAS  Google Scholar 

  29. Mikkelsen, T.S. et al. Comparative epigenomic analysis of murine and human adipogenesis. Cell 143, 156–169 (2010).

    Article  CAS  Google Scholar 

  30. Rey, G. et al. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver. PLoS Biol. 9, e1000595 (2011).

    Article  CAS  Google Scholar 

  31. Raghav, S.K. et al. Integrative genomics identifies the corepressor SMRT as a gatekeeper of adipogenesis through the transcription factors C/EBPβ and KAISO. Mol. Cell 46, 335–350 (2012).

    Article  CAS  Google Scholar 

  32. Siersbæk, R. et al. Extensive chromatin remodelling and establishment of transcription factor 'hotspots' during early adipogenesis. EMBO J. 30, 1459–1472 (2011).

    Article  Google Scholar 

  33. Lamesch, P. et al. hORFeome v3.1: a resource of human open reading frames representing over 10,000 human genes. Genomics 89, 307–315 (2007).

    Article  CAS  Google Scholar 

  34. Hens, K. et al. Automated protein-DNA interaction screening of Drosophila regulatory elements. Nat. Methods 8, 1065–1070 (2011).

    Article  CAS  Google Scholar 

  35. Whiteaker, J.R. et al. A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat. Biotechnol. 29, 625–634 (2011).

    Article  CAS  Google Scholar 

  36. Farnham, P.J. Insights from genomic profiling of transcription factors. Nat. Rev. Genet. 10, 605–616 (2009).

    Article  CAS  Google Scholar 

  37. John, S. et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat. Genet. 43, 264–268 (2011).

    Article  CAS  Google Scholar 

  38. Keller, A., Nesvizhskii, A.I., Kolker, E. & Aebersold, R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392 (2002).

    Article  CAS  Google Scholar 

  39. Nesvizhskii, A.I., Keller, A., Kolker, E. & Aebersold, R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75, 4646–4658 (2003).

    Article  CAS  Google Scholar 

  40. Desiere, F. et al. Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry. Genome Biol. 6, R9 (2005).

    Article  Google Scholar 

  41. Rosen, E.D. & MacDougald, O.A. Adipocyte differentiation from the inside out. Nat. Rev. Mol. Cell Biol. 7, 885–896 (2006).

    Article  CAS  Google Scholar 

  42. Thakur, S.S. et al. Deep and highly sensitive proteome coverage by LC-MS/MS without prefractionation. Mol. Cell Proteomics 10, M110.003699 (2011).

    Article  Google Scholar 

  43. Prakash, A. et al. Expediting the development of targeted SRM assays: using data from shotgun proteomics to automate method development. J. Proteome Res. 8, 2733–2739 (2009).

    Article  CAS  Google Scholar 

  44. Picotti, P. et al. High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat. Methods 7, 43–46 (2010).

    Article  CAS  Google Scholar 

  45. MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).

    Article  CAS  Google Scholar 

  46. Brownridge, P. & Beynon, R.J. The importance of the digest: proteolysis and absolute quantification in proteomics. Methods 54, 351–360 (2011).

    Article  CAS  Google Scholar 

  47. Jaquinod, M. et al. Mass spectrometry-based absolute protein quantification: PSAQ™ strategy makes use of “noncanonical” proteotypic peptides. Proteomics 12, 1217–1221 (2012).

    Article  CAS  Google Scholar 

  48. Guidance for industry: bioanalytical method validation. 〈http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070107.pdf〉 (Food and Drug Administration, US Department of Health and Human Services, 2001).

  49. Grant, C.E., Bailey, T.L. & Noble, W.S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).

    Article  CAS  Google Scholar 

  50. Vlieghe, D. et al. A new generation of JASPAR, the open-access repository for transcription factor binding site profiles. Nucleic Acids Res. 34, D95–D97 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank M. Lai for his help on solving Pinpoint software–related issues; M. Gstaiger (ETH Zurich) and H. Steen (Boston Children's Hospital) for providing us with the SH-quant and FLEX peptide tag-containing vectors, respectively; H. Lashuel (EPFL) for providing us with the α-synuclein clone; E. Ahrné for computational assistance and for providing feedback on the manuscript together with S. Waszak, M. Mueller and A. Schmidt; and D. Chiappe for technical and F. Armand for computational assistance. This work was supported by funds from the Swiss National Science Foundation, a Marie Curie International Reintegration grant (to B.D.) from the European Union Seventh Framework Program, a SystemsX.ch iPhD Fellowship (to J.S.) and grant (CycliX), the Roland Bailly Foundation (Geneva, Switzerland), the National Centre of Competence in Research (NCCR) Frontiers in Genetics Program, EMBO (ALTF 459-2012) and European Commission (EMBOCOFUND2010, GA-2010-267146) support from Marie Curie Actions (to P.A.G.) and by institutional support from the EPFL.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and planned the study: J.S., A.W.S., P.A.G., M.M. and B.D. Prepared the manuscript: J.S., A.W.S., P.A.G., B.Z., F.N., M.M. and B.D. Performed wet bench experiments: J.S., A.W.S., P.A.G., S.K.R. and C.G. Performed mass spectrometry data analysis: A.W.S. Performed biological data analysis: J.S., P.A.G. and B.D. Performed modeling: B.Z., I.K., F.N. and B.D. All the authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Marc Moniatte or Bart Deplancke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–18, Supplementary Tables 1–4 and Supplementary Note (PDF 11239 kb)

Supplementary Data 1

Proteotypic peptide selection for the ten TFs (multiplex) (XLSX 74 kb)

Supplementary Data 2

Precursor-to-product–ion transitions selected for SRM (tenTFs) (XLSX 60 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Simicevic, J., Schmid, A., Gilardoni, P. et al. Absolute quantification of transcription factors during cellular differentiation using multiplexed targeted proteomics. Nat Methods 10, 570–576 (2013). https://doi.org/10.1038/nmeth.2441

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2441

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing