Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct transfer of whole genomes from bacteria to yeast


Transfer of genomes into yeast facilitates genome engineering for genetically intractable organisms, but this process has been hampered by the need for cumbersome isolation of intact genomes before transfer. Here we demonstrate direct cell-to-cell transfer of bacterial genomes as large as 1.8 megabases (Mb) into yeast under conditions that promote cell fusion. Moreover, we discovered that removal of restriction endonucleases from donor bacteria resulted in the enhancement of genome transfer.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Effects of disrupting restriction-modification systems on genome transfer.
Figure 2: Modes of cell-to-cell genome transfer from bacterium to yeast.


  1. Gibson, D.G. et al. Science 319, 1215–1220 (2008).

    Article  CAS  Google Scholar 

  2. Noskov, V.N., Segall-Shapiro, T.H. & Chuang, R.Y. Nucleic Acids Res. 38, 2570–2576 (2010).

    Article  CAS  Google Scholar 

  3. Suzuki, Y. et al. Nat. Methods 8, 159–164 (2011).

    Article  CAS  Google Scholar 

  4. Hinnen, A., Hicks, J.B. & Fink, G.R. Proc. Natl. Acad. Sci. USA 75, 1929–1933 (1978).

    Article  CAS  Google Scholar 

  5. Ito, H., Fukuda, Y., Murata, K. & Kimura, A. J. Bacteriol. 153, 163–168 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kouprina, N. & Larionov, V. Nat. Protoc. 3, 371–377 (2008).

    Article  CAS  Google Scholar 

  7. Gibson, D.G. et al. Science 329, 52–56 (2010).

    Article  CAS  Google Scholar 

  8. Gibson, D.G. et al. Proc. Natl. Acad. Sci. USA 105, 20404–20409 (2008).

    Article  CAS  Google Scholar 

  9. Benders, G.A. et al. Nucleic Acids Res. 38, 2558–2569 (2010).

    Article  CAS  Google Scholar 

  10. Lartigue, C. et al. Science 325, 1693–1696 (2009).

    Article  CAS  Google Scholar 

  11. Karas, B.J., Tagwerker, C., Yonemoto, I.T., Hutchison, C.A. III & Smith, H.O. ACS Synthetic Biol. 1, 22–28 (2011).

    Article  Google Scholar 

  12. Tagwerker, C. et al. Nucleic Acids Res. 40, 10375–10383 (2012).

    Article  CAS  Google Scholar 

  13. Noskov, V.N. et al. ACS Synthetic Biol. 1, 267–273 (2012).

    Article  CAS  Google Scholar 

  14. Ushijima, S., Nakadai, T. & Uchida, K. Agric. Biol. Chem. 55, 129–136 (1991).

    CAS  Google Scholar 

  15. Maehara, T., Itaya, M., Ogura, M. & Tanaka, T. FEMS Microbiol. Lett. 325, 49–55 (2011).

    Article  CAS  Google Scholar 

  16. Tarshis, M., Salman, M. & Rottem, S. FEMS Microbiol. Lett. 66, 67–71 (1991).

    Article  CAS  Google Scholar 

  17. van Solingen, P. & van der Plaat, J.B. J. Bacteriol. 130, 946–947 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gyuris, J. & Duda, E.G. Mol. Cell Biol. 6, 3295–3297 (1986).

    Article  CAS  Google Scholar 

  19. Larionov, V., Kouprina, N., Solomon, G., Barrett, J.C. & Resnick, M.A. Proc. Natl. Acad. Sci. USA 94, 7384–7387 (1997).

    Article  CAS  Google Scholar 

  20. Lee, D.H., Miles, R.J. & Inal, J.R. Epidemiol. Infect. 98, 361–368 (1987).

    Article  CAS  Google Scholar 

  21. Tully, J.G., Rose, D.L., Whitcomb, R.F. & Wenzel, R.P. J. Infect. Dis. 139, 478–482 (1979).

    Article  CAS  Google Scholar 

  22. Poje, G. & Redfield, R.J. Methods Mol. Med. 71, 51–56 (2003).

    PubMed  Google Scholar 

Download references


We thank J. Firstenhaupt for preparing Figure 2a. This work was supported by Synthetic Genomics, Inc. B.J.K. was supported by the National Science and Engineering Research Council of Canada Postdoctoral Fellowships Program and by Synthetic Genomics, Inc. Y.S. was supported by the US Defense Advanced Research Projects Agency contract N66001-12-C-4039.

Author information

Authors and Affiliations



B.J.K., J.J., J.C.V., P.D.W., D.G.G., C.A.H., H.O.S. and Y.S. designed the research. B.J.K., J.J., L.S., L.M., J.S., A.R., P.D.W., D.G.G., C.A.H. and Y.S. performed experiments. G.M.G., M.J.M. and E.A.W. performed genome sequencing and analysis. B.J.K., J.J., J.S., A.R., P.D.W., D.G.G., C.A.H., H.O.S. and Y.S. wrote the paper.

Corresponding authors

Correspondence to Bogumil J Karas or Yo Suzuki.

Ethics declarations

Competing interests

J.C.V. is chief executive officer and co-chief scientific officer, H.O.S. is co-chief scientific officer and a member of the board of directors, C.A.H. is chairman of the scientific advisory board, and D.G.G. is a vice president of Synthetic Genomics, Inc. All four of these authors and the J. Craig Venter Institute hold shares of this company.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1 and 2 and Supplementary Notes 1–7 (PDF 663 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Karas, B., Jablanovic, J., Sun, L. et al. Direct transfer of whole genomes from bacteria to yeast. Nat Methods 10, 410–412 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing