Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Precise and reliable gene expression via standard transcription and translation initiation elements

Abstract

An inability to reliably predict quantitative behaviors for novel combinations of genetic elements limits the rational engineering of biological systems. We developed an expression cassette architecture for genetic elements controlling transcription and translation initiation in Escherichia coli: transcription elements encode a common mRNA start, and translation elements use an overlapping genetic motif found in many natural systems. We engineered libraries of constitutive and repressor-regulated promoters along with translation initiation elements following these definitions. We measured activity distributions for each library and selected elements that collectively resulted in expression across a 1,000-fold observed dynamic range. We studied all combinations of curated elements, demonstrating that arbitrary genes are reliably expressed to within twofold relative target expression windows with 93% reliability. We expect the genetic element definitions validated here can be collectively expanded to create collections of public-domain standard biological parts that support reliable forward engineering of gene expression at genome scales.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rules for regularizing gene expression.
Figure 2: Standard translation initiation elements using a bicistronic design are reliably reusable.
Figure 3: Bicistronic designs (BCDs) retain functional reliability with alternate transcription systems and different leader cistrons.
Figure 4: Precise and reliable gene expression via standard transcription-control and translation-initiation elements.

Similar content being viewed by others

References

  1. Endy, D. Foundations for engineering biology. Nature 438, 449–453 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Purnick, P.E. & Weiss, R. The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol. 10, 410–422 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Ellis, T., Adie, T. & Baldwin, G.S. DNA assembly for synthetic biology: from parts to pathways and beyond. Integr. Biol. (Camb.) 3, 109–118 (2011).

    Article  CAS  Google Scholar 

  4. Carr, P.A. & Church, G.M. Genome engineering. Nat. Biotechnol. 27, 1151–1162 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Gibson, D.G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Lu, T.K., Khalil, A.S. & Collins, J.J. Next-generation synthetic gene networks. Nat. Biotechnol. 27, 1139–1150 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Keasling, J.D. Manufacturing molecules through metabolic engineering. Science 330, 1355–1358 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Cardinale, S. & Arkin, A.P. Contextualizing context for synthetic biology—identifying causes of failure of synthetic biological systems. Biotechnol. J. 7, 856–866 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kittleson, J.T., Wu, G.C. & Anderson, J.C. Successes and failures in modular genetic engineering. Curr. Opin. Chem. Biol. 16, 329–336 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Salis, H.M., Mirsky, E.A. & Voigt, C.A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cambray, G., Mutalik, V.K. & Arkin, A.P. Toward rational design of bacterial genomes. Curr. Opin. Microbiol. 14, 624–630 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Canton, B., Labno, A. & Endy, D. Refinement and standardization of synthetic biological parts and devices. Nat. Biotechnol. 26, 787–793 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Rosenfeld, N., Young, J.W., Alon, U., Swain, P.S. & Elowitz, M.B. Accurate prediction of gene feedback circuit behavior from component properties. Mol. Syst. Biol. 3, 143 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Smolke, C.D. Building outside of the box: iGEM and the BioBricks Foundation. Nat. Biotechnol. 27, 1099–1102 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Mutalik, V.K. et al. Quantitative estimation of activity and quality for collections of functional genetic elements. Nat. Methods advance online publication, 10.1038/nmeth.2403 (10 March 2013).

  16. Lou, C., Stanton, B., Chen, Y.J., Munsky, B. & Voigt, C.A. Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nat. Biotechnol. 30, 1137–1142 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qi, L., Haurwitz, R.E., Shao, W., Doudna, J.A. & Arkin, A.P. RNA processing enables predictable programming of gene expression. Nat. Biotechnol. 30, 1002–1006 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Dreyfus, M. What constitutes the signal for the initiation of protein synthesis on Escherichia coli mRNAs? J. Mol. Biol. 204, 79–94 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Welch, M., Villalobos, A., Gustafsson, C. & Minshull, J. You're one in a googol: optimizing genes for protein expression. J. R. Soc. Interface 6 (suppl. 4), S467–S476 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bonnet, J., Subsoontorn, P. & Endy, D. Rewritable digital data storage in live cells via engineered control of recombination directionality. Proc. Natl. Acad. Sci. USA 109, 8884–8889 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Spanjaard, R.A. & Vanduin, J. Translational reinitiation in the presence and absence of a Shine and Dalgarno sequence. Nucleic Acids Res. 17, 5501–5507 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Oppenheim, D.S. & Yanofsky, C. Translational coupling during expression of the tryptophan operon of Escherichia coli. Genetics 95, 785–795 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Schümperli, D., McKenney, K., Sobieski, D.A. & Rosenberg, M. Translational coupling at an intercistronic boundary of the Escherichia coli galactose operon. Cell 30, 865–871 (1982).

    Article  PubMed  Google Scholar 

  24. Das, A. & Yanofsky, C. A ribosome binding site sequence is necessary for efficient expression of the distal gene of a translationally-coupled gene pair. Nucleic Acids Res. 12, 4757–4768 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schoner, B.E., Belagaje, R.M. & Schoner, R.G. Translation of a synthetic two-cistron mRNA in Escherichia coli. Proc. Natl. Acad. Sci. USA 83, 8506–8510 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Makoff, A.J. & Smallwood, A.E. The use of two-cistron constructions in improving the expression of a heterologous gene in E. coli. Nucleic Acids Res. 18, 1711–1718 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mendez-Perez, D., Gunasekaran, S., Orler, V.J. & Pfleger, B.F. A translation-coupling DNA cassette for monitoring protein translation in Escherichia coli. Metab. Eng. 14, 298–305 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Takyar, S., Hickerson, R.P. & Noller, H.F. mRNA helicase activity of the ribosome. Cell 120, 49–58 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Qu, X. et al. The ribosome uses two active mechanisms to unwind messenger RNA during translation. Nature 475, 118–121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barrick, D. et al. Quantitative analysis of ribosome binding sites in E.coli. Nucleic Acids Res. 22, 1287–1295 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Steitz, J.A. Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA. Nature 224, 957–964 (1969).

    Article  CAS  PubMed  Google Scholar 

  32. Yusupova, G.Z., Yusupov, M.M., Cate, J.H. & Noller, H.F. The path of messenger RNA through the ribosome. Cell 106, 233–241 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Kudla, G., Murray, A.W., Tollervey, D. & Plotkin, J.B. Coding-sequence determinants of gene expression in Escherichia coli. Science 324, 255–258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Iost, I., Guillerez, J. & Dreyfus, M. Bacteriophage T7 RNA polymerase travels far ahead of ribosomes in vivo. J. Bacteriol. 174, 619–622 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alper, H., Fischer, C., Nevoigt, E. & Stephanopoulos, G. Tuning genetic control through promoter engineering. Proc. Natl. Acad. Sci. USA 102, 12678–12683 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cox, R.S. III, Surette, M.G. & Elowitz, M.B. Programming gene expression with combinatorial promoters. Mol. Syst. Biol. 3, 145 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hook-Barnard, I.G. & Hinton, D.M. Transcription initiation by mix and match elements: flexibility for polymerase binding to bacterial promoters. Gene Regul. Syst. Bio. 1, 275–293 (2007).

    PubMed  PubMed Central  Google Scholar 

  38. Kwok, R. Five hard truths for synthetic biology. Nature 463, 288–290 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Sellers, W. A system of screw threads and nuts. J. Franklin Inst. 77, 344–350 (1864).

    Article  Google Scholar 

  40. Kozak, M. Initiation of translation in prokaryotes and eukaryotes. Gene 234, 187–208 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Scherbakov, D.V. & Garber, M.B. Overlapping genes in bacterial and phage genomes. Mol. Biol. 34, 485–495 (2000).

    Article  CAS  Google Scholar 

  42. Chan, L.Y., Kosuri, S. & Endy, D. Refactoring bacteriophage T7. Mol. Syst. Biol. 1, 2005.0018 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Temme, K., Zhao, D. & Voigt, C.A. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc. Natl. Acad. Sci. USA 109, 7085–7090 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jaschke, P.R., Lieberman, E.K., Rodriguez, J., Sierra, A. & Endy, D. A fully decompressed synthetic bacteriophage øX174 genome assembled and archived in yeast. Virology (2012).

  45. Mutalik, V.K., Qi, L., Guimaraes, J.C., Lucks, J.B. & Arkin, A.P. Rationally designed families of orthogonal RNA regulators of translation. Nat. Chem. Biol. 8, 447–454, 434, 278–284 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Liu, C.C., Qi, L., Yanofsky, C. & Arkin, A.P. Regulation of transcription by unnatural amino acids. Nat. Biotechnol. 29, 164–168 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Chang, A.L., Wolf, J.J. & Smolke, C.D. Synthetic RNA switches as a tool for temporal and spatial control over gene expression. Curr. Opin. Biotechnol. 23, 679–688 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pfleger, B.F., Pitera, D.J., Smolke, C.D. & Keasling, J.D. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat. Biotechnol. 24, 1027–1032 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Cobb, R.E., Si, T. & Zhao, H. Directed evolution: an evolving and enabling synthetic biology tool. Curr. Opin. Chem. Biol. 16, 285–291 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aitken, C.E., Petrov, A. & Puglisi, J.D. Single ribosome dynamics and the mechanism of translation. Annu. Rev. Biophys. 39, 491–513 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Ausubel, F.M. Short Protocols in Molecular Biology 5th edn. (Wiley, New York, 2002).

  52. Pédelacq, J.D., Cabantous, S., Tran, T., Terwilliger, T.C. & Waldo, G.S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, T.S. et al. BglBrick vectors and datasheets: a synthetic biology platform for gene expression. J. Biol. Eng. 5, 12 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1–I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McDowell, J.C., Roberts, J.W., Jin, D.J. & Gross, C. Determination of intrinsic transcription termination efficiency by RNA polymerase elongation rate. Science 266, 822–825 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Kireeva, M.L. & Kashlev, M. Mechanism of sequence-specific pausing of bacterial RNA polymerase. Proc. Natl. Acad. Sci. USA 106, 8900–8905 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Davis, J.H., Rubin, A.J. & Sauer, R.T. Design, construction and characterization of a set of insulated bacterial promoters. Nucleic Acids Res. 39, 1131–1141 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Brosius, J., Erfle, M. & Storella, J. Spacing of the −10 and −35 regions in the tac promoter. J. Biol. Chem. 260, 3539–3541 (1985).

    CAS  PubMed  Google Scholar 

  60. Saecker, R.M., Record, M.T. Jr. & Dehaseth, P.L. Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. J. Mol. Biol. 412, 754–771 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gross, C.A. et al. The functional and regulatory roles of sigma factors in transcription. Cold Spring Harb. Symp. Quant. Biol. 63, 141–155 (1998).

    Article  CAS  PubMed  Google Scholar 

  62. Shultzaberger, R.K., Malashock, D.S., Kirsch, J.F. & Eisen, M.B. The fitness landscapes of cis-acting binding sites in different promoter and environmental contexts. PLoS Genet. 6, e1001042 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rhodius, V.A., Mutalik, V.K. & Gross, C.A. Predicting the strength of UP-elements and full-length E. coli σE promoters. Nucleic Acids Res. 40, 2907–2924 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Rhodius, V.A. & Mutalik, V.K. Predicting strength and function for promoters of the Escherichia coli alternative sigma factor, σE. Proc. Natl. Acad. Sci. USA 107, 2854–2859 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mutalik, V.K., Nonaka, G., Ades, S.E., Rhodius, V.A. & Gross, C.A. Promoter strength properties of the complete sigma E regulon of Escherichia coli and Salmonella enterica. J. Bacteriol. 191, 7279–7287 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bujard, H. et al. A T5 promoter-based transcription-translation system for the analysis of proteins in vitro and in vivo. Methods Enzymol. 155, 416–433 (1987).

    Article  CAS  PubMed  Google Scholar 

  67. Miroslavova, N.S. & Busby, S.J. Investigations of the modular structure of bacterial promoters. Biochem. Soc. Symp. 73, 1–10 (2006).

    Article  CAS  Google Scholar 

  68. Szoke, P.A., Allen, T.L. & deHaseth, P.L. Promoter recognition by Escherichia coli RNA polymerase: effects of base substitutions in the -10 and -35 regions. Biochemistry 26, 6188–6194 (1987).

    Article  CAS  PubMed  Google Scholar 

  69. Engler, C., Kandzia, R. & Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS ONE 3, e3647 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Postle, K., Nguyen, T.T. & Bertrand, K.P. Nucleotide sequence of the repressor gene of the TN10 tetracycline resistance determinant. Nucleic Acids Res. 12, 4849–4863 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Matsuda, A., Toma, K. & Komatsu, K. Nucleotide sequences of the genes for two distinct cephalosporin acylases from a Pseudomonas strain. J. Bacteriol. 169, 5821–5826 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Master, E.R., Zheng, Y., Storms, R., Tsang, A. & Powlowski, J. A xyloglucan-specific family 12 glycosyl hydrolase from Aspergillus niger: recombinant expression, purification and characterization. Biochem. J. 411, 161–170 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Redding-Johanson, A.M. et al. Targeted proteomics for metabolic pathway optimization: application to terpene production. Metab. Eng. 13, 194–203 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Martin, V.J., Pitera, D.J., Withers, S.T., Newman, J.D. & Keasling, J.D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21, 796–802 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. Blattner, F.R. et al. The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Gulevich, A.Y. et al. A new method for the construction of translationally coupled operons in a bacterial chromosome. Mol. Biol. 43, 505–514 (2009).

    Article  CAS  Google Scholar 

  77. Olins, P.O., Devine, C.S., Rangwala, S.H. & Kavka, K.S. The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. Gene 73, 227–235 (1988).

    Article  CAS  PubMed  Google Scholar 

  78. Olins, P.O. & Rangwala, S.H. A novel sequence element derived from bacteriophage T7 mRNA acts as an enhancer of translation of the lacZ gene in Escherichia coli. J. Biol. Chem. 264, 16973–16976 (1989).

    CAS  PubMed  Google Scholar 

  79. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European molecular biology open software suite. Trends Genet. 16, 276–277 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Needleman, S.B. & Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453 (1970).

    Article  CAS  PubMed  Google Scholar 

  82. Markham, N.R. & Zuker, M. UNAFold: software for nucleic acid folding and hybridization. Methods Mol. Biol. 453, 3–31 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Wu, C.F.J. & Hamada, M.S. Experiments: Planning, Analysis, and Optimization 2nd edn. (Wiley, Hoboken, New Jersey, USA, 2009).

  84. Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109–130 (2001).

    Article  CAS  Google Scholar 

  85. Freedman, D. & Diaconis, P. On the histogram as a density estimator: L2 theory. Z Wahrscheinlichkeit 57, 453–476 (1981).

    Article  Google Scholar 

  86. Saeed, A.I. et al. TM4 microarray software suite. Methods Enzymol. 411, 134–193 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Crooks, G.E., Hon, G., Chandonia, J.M. & Brenner, S.E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Smolke for discussions. We acknowledge support from a US National Science Foundation grant to the BIOFAB (EEC 0946510) and unrestricted gifts from Genencor, Agilent and DSM. J.C.G. acknowledges financial support from the Portuguese Fundação para a Ciência e a Tecnologia (FCT) (SFRH/BD/47819/2008); G.C. acknowledges the Human Frontier Science Program (LT000873/2011-l) and Bettencourt Schueller Foundation; A.P.A. and D.E. acknowledge the Synthetic Biology Engineering Research Center under National Science Foundation grant 04-570/0540879. This work was conducted at the Joint BioEnergy Institute supported by the Office of Science, Office of Biological and Environmental Research, US Department of Energy, contract DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

V.K.M., A.P.A. and D.E. conceived the study and designed the experiments. V.K.M., C.L., Q.-A.M., A.B.T. and M.P. performed the experiments. V.K.M., J.C.G., G.C., M.J.C., A.P.A. and D.E. analyzed the data. V.K.M., J.C.G., G.C., J.D.K., A.P.A. and D.E. wrote the manuscript. All authors discussed and commented on the manuscript.

Corresponding authors

Correspondence to Adam P Arkin or Drew Endy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–32, Supplementary Table 1 and Supplementary Note (PDF 7374 kb)

Supplementary Data 1

List of parts, plasmids and strains used in the present work. Columns as follows: A, number; B, vector backbone; C, abstract part number for promoter element, indicated as “apFAB#”; D, promoter name; E, abstract part number for 5' UTR element, indicated as “apFAB#”; F, 5' UTR name used in the main text; G, abstract part number for GOI element, indicated as “apFAB#”; H, GOI name; I, plasmid number “pFAB#”; J, antibiotics; K, replication origin; L, strain; M, strain number “sFAB#”; N, project name. (XLS 462 kb)

Supplementary Data 2

List of primers used in the present work. Columns as follows: A, number; B, oligonucleotide number (“oFAB#”; primers used for sequencing are denoted as “soFAB#”); C, forward and reverse primers are indicated as FW and RV; D, information notes for the primer; E, primer sequence (5' to 3'); F, project name. (XLS 129 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mutalik, V., Guimaraes, J., Cambray, G. et al. Precise and reliable gene expression via standard transcription and translation initiation elements. Nat Methods 10, 354–360 (2013). https://doi.org/10.1038/nmeth.2404

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2404

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing