Abstract
We introduce a biophysical model of miRNA-target interaction and infer its parameters from Argonaute 2 cross-linking and immunoprecipitation data. We show that a substantial fraction of human miRNA target sites are noncanonical and that predicted target-site affinity correlates well with the extent of target destabilization. Our model provides a rigorous biophysical approach to miRNA target identification beyond ad hoc miRNA seed–based methods.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Comprehensive machine-learning-based analysis of microRNA–target interactions reveals variable transferability of interaction rules across species
BMC Bioinformatics Open Access 24 May 2021
-
Simultaneous learning of individual microRNA-gene interactions and regulatory comodules
BMC Bioinformatics Open Access 10 May 2021
-
Population variation in miRNAs and isomiRs and their impact on human immunity to infection
Genome Biology Open Access 30 July 2020
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Bartel, D.P. Cell 136, 215–233 (2009).
Friedman, R.C., Farh, K.K.H., Burge, C.B. & Bartel, D.P. Genome Res. 19, 92–105 (2009).
Gaidatzis, D., van Nimwegen, E., Hausser, J. & Zavolan, M. BMC Bioinformatics 8, 69 (2007).
Vella, M.C., Choi, E.Y., Lin, S.Y., Reinert, K. & Slack, F.J. Genes Dev. 18, 132–137 (2004).
Lal, A. et al. Mol. Cell 35, 610–625 (2009).
Chi, S.W., Zang, J.B., Mele, A. & Darnell, R.B. Nature 460, 479–486 (2009).
Brennecke, J., Stark, A., Russell, R.B. & Cohen, S.M. PLoS Biol. 3, e85 (2005).
Kishore, S. et al. Nat. Methods 8, 559–564 (2011).
Chi, S.W., Hannon, G.J. & Darnell, R.B. Nat. Struct. Mol. Biol. 19, 321–327 (2012).
Linsley, P.S. et al. Mol. Cell. Biol. 27, 2240–2252 (2007).
Grimson, A. et al. Mol. Cell 27, 91–105 (2007).
Leivonen, S.K. et al. Oncogene 28, 3926–3936 (2009).
Selbach, M. et al. Nature 455, 58–63 (2008).
Gennarino, V.A. et al. Genome Res. 19, 481–490 (2009).
Grün, D., Wang, Y.L., Langenberger, D., Gunsalus, K.C. & Rajewsky, N. PLoS Comput. Biol. 1, e13 (2005).
Garcia, D.M. et al. Nat. Struct. Mol. Biol. 18, 1139–1146 (2011).
Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. & Segal, E. Nat. Genet. 39, 1278–1284 (2007).
Betel, D., Koppal, A., Agius, P., Sander, C. & Leslie, C. Genome Biol. 11, R90 (2010).
Miranda, K.C. et al. Cell 126, 1203–1217 (2006).
Rehmsmeier, M., Steffen, P., Hochsmann, M. & Giegerich, R. RNA 10, 1507–1517 (2004).
Lorenz, R. et al. Algorithms Mol. Biol. 6, 26 (2011).
Yang, J.H. et al. Nucleic Acids Res. 39, D202–D209 (2011).
Gentleman, R.C. Genome Biol. 5, R80 (2004).
Wu, Z., Irizarry, R.A., Gentleman, R., Martinez-Murillo, F. & Spencer, F. J. Am. Stat. Assoc. 99, 909–917 (2004).
Acknowledgements
We are grateful to N. Beerenwinkel and S. Bergmann for comments in the initial stages of this work. We are also thankful to A.R. Gruber and the other members of the Zavolan group for providing input and feedback on the algorithm and the manuscript, A. Crippa for help with the code distribution and P.J. Balwierz for help converting the LaTeX manuscript to Word. M.K. was supported by Swiss National Science Foundation ProDoc grant PDFMP3_123123 to M.Z. and E.v.N. The work was additionally supported by Swiss National Science Foundation grant 31003A_127307 to M.Z.
Author information
Authors and Affiliations
Contributions
Conceived of and designed the experiments: E.v.N. and M.Z. Performed the experiments: M.K. and J.H. Analyzed the data: J.H., M.K., E.v.N. and M.Z. Wrote the paper: J.H., M.K., M.Z. and E.v.N.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Text and Figures
Supplementary Table 2 and Supplementary Note (PDF 7288 kb)
Supplementary Table 1
Ago2-CLIP cross-link–centered sites used to train the MIRZA model (XLSX 217 kb)
Rights and permissions
About this article
Cite this article
Khorshid, M., Hausser, J., Zavolan, M. et al. A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat Methods 10, 253–255 (2013). https://doi.org/10.1038/nmeth.2341
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmeth.2341
This article is cited by
-
MiRNA fine tuning for crop improvement: using advance computational models and biotechnological tools
Molecular Biology Reports (2022)
-
Comprehensive machine-learning-based analysis of microRNA–target interactions reveals variable transferability of interaction rules across species
BMC Bioinformatics (2021)
-
Simultaneous learning of individual microRNA-gene interactions and regulatory comodules
BMC Bioinformatics (2021)
-
CLIP and complementary methods
Nature Reviews Methods Primers (2021)
-
Population variation in miRNAs and isomiRs and their impact on human immunity to infection
Genome Biology (2020)