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complexes with unprecedented sensitivity, 
may help bring the technology to a much 
broader swath of researchers. It will be par-
ticularly interesting to watch whether the 
technology can be merged with advanced 
‘top down’  proteomics  approaches  
(J.C. Tran et al., Nature 480, 254–258, 
2011)—which seek to profile intact pro-
teins and their post-translational modifica-
tions in high throughput—to allow detailed 
characterization of intact protein complexes 
on a proteome scale (P.D. Compton and 
N.L. Kelleher, Nat. Methods 9, 1065–1066,  
2012). Allison Doerr

how they function, but when the proteins 
are chopped up into peptides, these patterns 
become difficult to interpret. Further, pro-
teins rarely act in isolation; rather, they carry 
out biological processes by interacting with 
other proteins and other molecules in the 
cell. Such information is also lost in a typical 
shotgun approach.

But by using unique mass spectrometry 
methods to detect and characterize intact 
proteins and protein complexes, valuable 
information providing clues as to a protein’s 
function is retained. Proteins are gently ion-
ized into the gas phase, which preserves their 
native three-dimensional structures; under 
the right conditions, even large, noncova-
lently bound, soluble and membrane-protein 
complexes can be observed intact by mass 
spectrometry.

To date, however, mass spectrometry 
analysis of intact protein complexes has 
required highly specialized instrumenta-
tion and has therefore been limited to a 
handful of expert labs. But new develop-
ments in 2012 (R.J. Rose et al., Nat. Methods 
9, 1084–1086, 2012), extending the use of 
the popular and powerful Orbitrap mass 
analyzer to detect large intact protein 

❯❯Mass spectrometry of 
intact protein complexes
Mass spectrometry technology to detect 
and characterize large, intact protein 
complexes is becoming more accessible.

Our Method of the Year 2012 features mass 
spectrometry as applied to one area, targeted 
proteome analysis, but this versatile molecu-
lar ‘weighing’ technology is well suited to 
address a variety of scientific questions across 
disciplines. One interesting area to watch is 
the application of mass spectrometry to 
detect and characterize proteins and protein 
complexes in their intact state. 

Most of the time, mass spectrometry 
analyses of proteins are performed using a 
‘shotgun’ strategy: researchers wanting to 
identify, quantify and characterize proteins in 
a sample first snip them into peptides, which 
are more readily detected by the instrument 
than are intact proteins. Though the shot-
gun approach has met with wide success for 
high-throughput proteome profiling, much 
biological information is lost in the process. 
Proteins often contain patterns of multiple 
post-translational modifications that affect 

The application of mass spectrometry to detect 
and characterize large, intact protein complexes 
(such as the yeast 20S proteasome, depicted 
here) seems likely to grow.

❯❯Machines learn 
phenotypes
Automated classifiers speed up 
biological phenotyping.

Detecting variations in the phenotypes of 
biological samples, be they cells or model 
organisms, typically involves distinguishing 
visual patterns. What does the cellular local-
ization of a protein look like upon treatment 
with signaling modulators? What happens 
to the morphology of a fly’s head or the 
locomotion of a mouse when specific genes 
are mutated or knocked down?

Manually distinguishing such patterns 
can be tedious for researchers when the 
number of samples to be examined is very 
large. But computers can be taught to dis-
tinguish biological patterns too.

Machine learning in biology typically 
involves training an algorithm—or letting 
it train itself—to automatically classify sam-
ples into phenotypic groups. To do this, the 
classifier must learn which features in the 
image data are informative for distinguish-
ing the different phenotypic classes. The 
image data may be static or dynamic, and 

they could be of cells or model organisms or 
any other imaged sample. Phenotypes can 
be assigned on the basis of prior annotation 
by an experimenter or can be identified in 
an unsupervised fashion by the classifier 
itself. The result is an automated classifier 
that should accurately distinguish pheno-
types of interest in a test sample.

Automated classifiers are particularly 
apt in the context of large-scale screens, in 
which tens of thousands of samples, if not 
more, must be examined. Genome-scale 
methods to generate mutations or gene 
knockdowns are readily available. In some 
systems, comprehensive mutant collections 
already exist. The bottleneck in large-scale 
screens lies at the phenotyping stage; it is 
likely that automated classifiers can help. 

In a recent example, Lu and colleagues 
trained classifiers to automatically iden-
tify Caenorhabditis elegans with changed 
synaptic morphology (Nat. Methods 9, 
977–980, 2012). By using the classifier in 
real time as the worms passed through a 
microfluidic chip, the researchers achieved 
entirely automated forward genetic 
screening 100 times faster than would be 
possible manually.

Quantitative phenotyping, in which 
subtle phenotypes must be distinguished 
or many individuals must be monitored to 
gather sufficient data for statistical analysis, 
can also benefit from machine learning. 
Classifiers can be trained to detect behav-
ioral phenotypes (in model organisms, for 
instance) and used to automatically map the 
sequence of these events in many hours of 
video recordings.

Powerful though it may be, machine 
learning in biology still faces challeng-
es.  But as the tools improve for biolo-
gists to implement this approach, it is 
possible that phenotyping will slowly 
cease to be the bottleneck in biological  
analysis. Natalie de Souza

A computer distinguishes samples with 
different phenotypes.
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