Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Systematic reconstruction of RNA functional motifs with high-throughput microfluidics

Abstract

We present RNA–mechanically induced trapping of molecular interactions (RNA-MITOMI), a microfluidic platform that allows integrated synthesis and functional assays for programmable RNA libraries. The interaction of a comprehensive library of RNA mutants with stem-loop–binding protein precisely defined the RNA structural and sequence features that govern affinity. The functional motif reconstructed in a single experiment on our platform uncovers new binding specificities and enriches interpretation of phylogenetic data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA-MITOMI is a microfluidic platform for integrated synthesis and affinity measurement across a programmable RNA library.
Figure 2: SLBP binding landscape across the library of stem-loop sequence and structure variants.
Figure 3: Reconstruction and validation of the stem-loop functional motif.

Similar content being viewed by others

References

  1. Djebali, S. et al. Nature 489, 101–108 (2012).

    Article  CAS  Google Scholar 

  2. Martin, L. & Chang, H.Y. J. Clin. Invest. 122, 1589–1595 (2012).

    Article  CAS  Google Scholar 

  3. Guttman, M. & Rinn, J.L. Nature 482, 339–346 (2012).

    Article  CAS  Google Scholar 

  4. Cooper, G.M. & Shendure, J. Nat. Rev. Genet. 12, 628–640 (2011).

    Article  CAS  Google Scholar 

  5. Marzluff, W.F., Wagner, E.J. & Duronio, R.J. Nat. Rev. Genet. 9, 843–854 (2008).

    Article  CAS  Google Scholar 

  6. Maerkl, S.J. & Quake, S.R. Science 315, 233–237 (2007).

    Article  CAS  Google Scholar 

  7. Battle, D.J. & Doudna, J.A. RNA 7, 123–132 (2001).

    Article  CAS  Google Scholar 

  8. Davila Lopez, M. & Samuelsson, T. RNA 14, 1–10 (2008).

    Article  Google Scholar 

  9. Williams, A.S. & Marzluff, W.F. Nucleic Acids Res. 23, 654–662 (1995).

    Article  CAS  Google Scholar 

  10. Dominski, Z., Yang, X.C., Kaygun, H., Dadlez, M. & Marzluff, W.F. Mol. Cell 12, 295–305 (2003).

    Article  CAS  Google Scholar 

  11. Yang, X.C., Purdy, M., Marzluff, W.F. & Dominski, Z. J. Biol. Chem. 281, 30447–30454 (2006).

    Article  CAS  Google Scholar 

  12. Koenig, J., Zarnack, K., Luscombe, N.M. & Ule, J. Nat. Rev. Genet. 13, 77–83 (2011).

    Article  Google Scholar 

  13. Zhao, J. et al. Mol. Cell 40, 939–953 (2010).

    Article  CAS  Google Scholar 

  14. Granneman, S., Kudla, G., Petfalski, E. & Tollervey, D. Proc. Natl. Acad. Sci. USA 106, 9613–9618 (2009).

    Article  CAS  Google Scholar 

  15. Chu, C., Qu, K., Zhong, F.L., Artandi, S.E. & Chang, H.Y. Mol. Cell 44, 667–678 (2011).

    Article  CAS  Google Scholar 

  16. Liang, J.C., Bloom, R.J. & Smolke, C.D. Mol. Cell 43, 915–926 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R.C. Spitale and C. Chu for helpful discussions, J.C. Liang, R.J. Bloom and C.D. Smolke for helpful discussions and assistance with Biacore, and A. Clore of Integrated DNA Technologies for assistance with probe designs. L.M. was funded by the Department of Defense National Defense Science & Engineering Graduate Fellowship. Our work was supported by US National Institutes of Health R01-HG004361 (to H.Y.C.) and R01GM29832 (to W.F.M.). H.Y.C. and S.R.Q. are funded by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

L.M., S.R.Q. and H.Y.C. conceived the study. L.M., M.M., S.M.L. and R.V.S. performed experiments. L.M., M.M., S.M.L., W.F.M., S.R.Q. and H.Y.C. discussed the results and analyzed the data. L.M. and H.Y.C. wrote the paper.

Corresponding authors

Correspondence to Stephen R Quake or Howard Y Chang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Tables 1–4, Supplementary Notes 1–2 (PDF 5979 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, L., Meier, M., Lyons, S. et al. Systematic reconstruction of RNA functional motifs with high-throughput microfluidics. Nat Methods 9, 1192–1194 (2012). https://doi.org/10.1038/nmeth.2225

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2225

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing