Article | Published:

A toolkit and benchmark study for FRET-restrained high-precision structural modeling

Nature Methods volume 9, pages 12181225 (2012) | Download Citation

Abstract

We present a comprehensive toolkit for Förster resonance energy transfer (FRET)-restrained modeling of biomolecules and their complexes for quantitative applications in structural biology. A dramatic improvement in the precision of FRET-derived structures is achieved by explicitly considering spatial distributions of dye positions, which greatly reduces uncertainties due to flexible dye linkers. The precision and confidence levels of the models are calculated by rigorous error estimation. The accuracy of this approach is demonstrated by docking a DNA primer-template to HIV-1 reverse transcriptase. The derived model agrees with the known X-ray structure with an r.m.s. deviation of 0.5 Å. Furthermore, we introduce FRET-guided 'screening' of a large structural ensemble created by molecular dynamics simulations. We used this hybrid approach to determine the formerly unknown configuration of the flexible single-strand template overhang.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

Protein Data Bank

References

  1. 1.

    Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846 (1978).

  2. 2.

    et al. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. USA 93, 6264–6268 (1996).

  3. 3.

    & Detecting the conformation of individual proteins in live cells. Nat. Methods 7, 203–205 (2010).

  4. 4.

    , , , & Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations. Proc. Natl. Acad. Sci. USA 104, 1528–1533 (2007).

  5. 5.

    et al. Effect of flexibility and cis residues in single-molecule FRET studies of polyproline. Proc. Natl. Acad. Sci. USA 104, 18964–18969 (2007).

  6. 6.

    , , , & Single-molecule FRET measures bends and kinks in DNA. Proc. Natl. Acad. Sci. USA 105, 18337–18342 (2008).

  7. 7.

    et al. Structural heterogeneity and quantitative FRET efficiency distributions of polyprolines through a hybrid atomistic simulation and Monte Carlo approach. PLoS ONE 6, e19791 (2011).

  8. 8.

    et al. Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Cell 108, 599–614 (2002).

  9. 9.

    et al. Single-molecule fluorescence resonance energy transfer reveals a dynamic equilibrium between closed and open conformations of syntaxin 1. Proc. Natl. Acad. Sci. USA 100, 15516–15521 (2003).

  10. 10.

    et al. Single-molecule tracking of mRNA exiting from RNA polymerase II. Proc. Natl. Acad. Sci. USA 105, 135–140 (2008).

  11. 11.

    et al. A nano-positioning system for macromolecular structural analysis. Nat. Methods 5, 965–971 (2008).

  12. 12.

    et al. Single-molecule FRET-derived model of the synaptotagmin 1-SNARE fusion complex. Nat. Struct. Mol. Biol. 17, 318–324 (2010).

  13. 13.

    , , , & Three-dimensional molecular modeling with single molecule FRET. J. Struct. Biol. 173, 497–505 (2011).

  14. 14.

    , , , & Global structure of forked DNA in solution revealed by high-resolution single-molecule FRET. J. Am. Chem. Soc. 133, 1188–1191 (2011).

  15. 15.

    , , & Domain orientation in the N-terminal PDZ tandem from PSD-95 is maintained in the full-length protein. Structure 19, 810–820 (2011).

  16. 16.

    , , , & Single-molecule nanopositioning: structural transitions of a helicase-DNA complex during ATP hydrolysis. Biophys. J. 101, 976–984 (2011).

  17. 17.

    et al. Solution structure of the ESCRT-I complex by small-angle X-ray scattering, EPR, and FRET spectroscopy. Proc. Natl. Acad. Sci. USA 108, 9437–9442 (2011).

  18. 18.

    & Application of the nano-positioning system to the analysis of fluorescence resonance energy transfer networks. J. Phys. Chem. B 115, 11927–11937 (2011).

  19. 19.

    , , , & Tryptophan-BODIPY: A versatile donor-acceptor pair for probing generic changes of intraprotein distances. Phys. Chem. Chem. Phys. 8, 3130–3140 (2006).

  20. 20.

    , , , & Distance-restrained docking of rifampicin and rifamycin SV to RNA polymerase using systematic FRET measurements: developing benchmarks of model quality and reliability. Biophys. J. 88, 925–938 (2005).

  21. 21.

    , & Fluorescence resonance energy transfer in dye-labeled DNA. J. Photochem. Photobiol. A Chem. 190, 321–327 (2007).

  22. 22.

    , , & Fretting about FRET: Correlation between kappa and R. Biophys. J. 92, 4168–4178 (2007).

  23. 23.

    et al. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity. J. Am. Chem. Soc. 133, 2463–2480 (2011).

  24. 24.

    et al. Nanometer distance measurements in RNA using site-directed spin labeling. Biophys. J. 93, 2110–2117 (2007).

  25. 25.

    , , , & Reverse transcriptase in motion: Conformational dynamics of enzyme-substrate interactions. Biochim. Biophys. Acta 1804, 1202–1212 (2010).

  26. 26.

    , , , & Nonnucleoside inhibitor binding affects the interactions of the fingers subdomain of human immunodeficiency virus type 1 reverse transcriptase with DNA. J. Virol. 78, 3387–3397 (2004).

  27. 27.

    , , & Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282, 1669–1675 (1998).

  28. 28.

    et al. Multi-parameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase:primer/template complexes. Proc. Natl. Acad. Sci. USA 100, 1655–1660 (2003).

  29. 29.

    et al. Insights into DNA polymerization mechanisms from structure and function analysis of HIV-1 reverse transcriptase. Biochemistry 34, 5351–5363 (1995).

  30. 30.

    , & Impact of template overhang-binding region of HIV-1 RT on the binding and orientation of the duplex region of the template-primer. Mol. Cell. Biochem. 338, 19–33 (2010).

  31. 31.

    Principles of Fluorescence Spectroscopy 2nd edn. (Springer, 2006).

  32. 32.

    , & Resonance Energy Transfer: Theory and Data. (Wiley, 1994).

  33. 33.

    , , , & Accurate single-molecule FRET studies using multiparameter fluorescence detection. Methods Enzymol. 475, 455–514 (2010).

  34. 34.

    , , & Separating structural heterogeneities from stochastic variations in fluorescence resonance energy transfer distributions via photon distribution analysis. J. Phys. Chem. B 110, 6970–6978 (2006).

  35. 35.

    & Single-macromolecule fluorescence resonance energy transfer and free-energy profiles. J. Phys. Chem. B 107, 5058–5063 (2003).

  36. 36.

    , , & Characterizing multiple molecular states in single-molecule multiparameter fluorescence detection by probability distribution analysis. J. Phys. Chem. B 112, 8361–8374 (2008).

  37. 37.

    , & The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys. J. 26, 161–193 (1979).

  38. 38.

    & The RosettaDock server for local protein-protein docking. Nucleic Acids Res. 36, W233–W238 (2008).

  39. 39.

    & Pushing the limits of what is achievable in protein-DNA docking: benchmarking HADDOCK's performance. Nucleic Acids Res. 38, 5634–5647 (2010).

  40. 40.

    Discussion: jackknife, bootstrap and other resampling methods in regression-analysis. Ann. Stat. 14, 1301–1304 (1986).

  41. 41.

    Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992).

  42. 42.

    et al. The Amber biomolecular simulation programs. J. Comput. Chem. 26, 1668–1688 (2005).

  43. 43.

    & Dynamic personalities of proteins. Nature 450, 964–972 (2007).

  44. 44.

    & Protein dynamism and evolvability. Science 324, 203–207 (2009).

  45. 45.

    , , , & Filtered FCS: species auto- and cross-correlation functions highlight binding and dynamics in biomolecules. ChemPhysChem 13, 1036–1053 (2012).

  46. 46.

    Structural Investigations on HIV-1 RT Using Single Pair Fluorescence Energy Transfer PhD thesis, Univ. Dortmund (2002).

  47. 47.

    et al. Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. J. Biotechnol. 86, 163–180 (2001).

  48. 48.

    et al. Shot-noise limited single-molecule FRET histograms: Comparison between theory and experiments. J. Phys. Chem. B 110, 22103–22124 (2006).

  49. 49.

    , & Characterizing single-molecule FRET dynamics with probability distribution analysis. ChemPhysChem 11, 2209–2219 (2010).

  50. 50.

    , & Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994).

  51. 51.

    Fundamentals of Probability and Statistics for Engineers (Wiley, 2004).

  52. 52.

    , , & On the quantitative molecular analysis of electronic energy transfer within donor-acceptor pairs. Phys. Chem. Chem. Phys. 9, 1941–1951 (2007).

Download references

Acknowledgements

We dedicate this paper to the memory of our brilliant colleague, Robert M. Clegg, a pioneer in the application of FRET in the life sciences and a remarkable human being. We would like to thank E. Schweinberger, O. Kensch and B.M. Wöhrl for assistance with the experiments, E. Haustein for analytical software, H. Sanabria for help with data visualization and A. Scheidig for helpful discussions. We acknowledge financial support from the Volkswagen Foundation (to R.S.G. and C.A.M.S.; grant no. I/74470), Max-Planck Society (to R.S.G.), German Federal Ministry of Education and Research (BMBF) (BioFuture grant no. 0311865) and German Science Foundation within SPP 1258 (grant no. SE 1195/12-2) (to C.A.M.S.) and 'Fit for Excellence' initiative of HHU (to H.G.). T.P. thanks the International Helmholtz Research School of Biophysics and Soft Matter (IHRS BioSoft), and S.S. thanks the NRW Research School of Biological Structures in Molecular Medicine and Biotechnology (BioStruct) for scholarships.

Author information

Author notes

    • Thomas Peulen
    •  & Simon Sindbert

    These authors contributed equally to this paper.

Affiliations

  1. Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität (HHU), Düsseldorf, Germany.

    • Stanislav Kalinin
    • , Thomas Peulen
    • , Simon Sindbert
    • , Paul J Rothwell
    • , Sylvia Berger
    •  & Claus A M Seidel
  2. Max-Planck-Institut für Molekulare Physiologie, Dortmund, Germany.

    • Paul J Rothwell
    • , Tobias Restle
    •  & Roger S Goody
  3. Institut für Molekulare Medizin, Universität zu Lübeck, Lübeck, Germany.

    • Tobias Restle
  4. Institut für Pharmazeutische und Medizinische Chemie, HHU, Düsseldorf, Germany.

    • Holger Gohlke

Authors

  1. Search for Stanislav Kalinin in:

  2. Search for Thomas Peulen in:

  3. Search for Simon Sindbert in:

  4. Search for Paul J Rothwell in:

  5. Search for Sylvia Berger in:

  6. Search for Tobias Restle in:

  7. Search for Roger S Goody in:

  8. Search for Holger Gohlke in:

  9. Search for Claus A M Seidel in:

Contributions

S.K. and C.A.M.S. designed studies and assisted in data analysis and interpretation; P.J.R. and S.B. prepared samples and performed experiments; S.K. developed the software; T.P. and S.S. analyzed the data; H.G. performed MD simulations and assisted with data interpretation; T.R. and R.S.G. supervised the biochemical experiments and assisted with data collection and interpretation; S.K., T.P., S.S., T.R., H.G. and C.A.M.S. wrote the manuscript; C.A.M.S. supervised the project.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Stanislav Kalinin or Claus A M Seidel.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figures 1 and 2, Supplementary Tables 1–5, Supplementary Notes 1–15, Supplementary Data 1–3 and Supplementary Methods

Zip files

  1. 1.

    Supplementary Data 4

    Protein Data Bank file with conformers of the flexible ssDNA template overhang.

  2. 2.

    Supplementary Software

    Software for FRET-restrained positioning and screening with help file and test data.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmeth.2222

Further reading