Automated velocity mapping of migrating cell populations (AVeMap)

Article metrics

Abstract

Characterizing the migration of a population of cells remains laborious and somewhat subjective. Advances in genetics and robotics allow researchers to perform many experiments in parallel, but analyzing the large sets of data remains a bottleneck. Here we describe a rapid, fully automated correlation-based method for cell migration analysis, compatible with standard video microscopy. This method allows for the computation of quantitative migration parameters via an extensive dynamic mapping of cell displacements.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic of AVeMap.
Figure 2: AVeMap analysis of migrating monolayers.

References

  1. 1

    Liang, C.-C., Park, A.Y. & Guan, J.-L. Nat. Protoc. 2, 329–333 (2007).

  2. 2

    Simpson, K.J. et al. Nat. Cell Biol. 10, 1027–1038 (2008).

  3. 3

    Vitorino, P. & Meyer, T. Genes Dev. 22, 3268–3281 (2008).

  4. 4

    Yarrow, J.C., Perlman, Z.E., Westwood, N.J. & Mitchison, T.J. BMC Biotechnol. 4, 21 (2004).

  5. 5

    Ridley, A.J. et al. Science 302, 1704–1709 (2003).

  6. 6

    Bai, S.W. et al. BMC Biol. 9, 54 (2011).

  7. 7

    Zaritsky, A. et al. PLoS ONE 6, e27593 (2011).

  8. 8

    Huth, J. et al. BMC Cell Biol. 11, 24 (2010).

  9. 9

    Hand, A.J., Sun, T., Barber, D.C., Hose, D.R. & MacNeil, S. J. Microsc. 234, 62–79 (2009).

  10. 10

    Petitjean, L. et al. Biophys. J. 98, 1790–1800 (2010).

  11. 11

    Angelini, T.E. et al. Proc. Natl. Acad. Sci. USA 108, 4714–4719 (2011).

  12. 12

    Supatto, W. et al. Proc. Natl. Acad. Sci. USA 102, 1047–1052 (2005).

  13. 13

    Raffel, M., Willert, C.E. & Kompenhans, J. Particle Image Velocimetry: A Practical Guide (Springer, Berlin, 1998).

  14. 14

    Hamad, N.M. et al. Genes Dev. 16, 2045–2057 (2002).

  15. 15

    Takenawa, T. & Suetsugu, S. Nat. Rev. Mol. Cell Biol. 8, 37–48 (2007).

  16. 16

    Farooqui, R. & Fenteany, G. J. Cell Sci. 118, 51–63 (2005).

  17. 17

    Hahn, W.C. et al. Nature 400, 464–468 (1999).

  18. 18

    Kasai, H., Allen, J.T., Mason, R.M., Kamimura, T. & Zhang, Z. Respir. Res. 6, 56 (2005).

  19. 19

    Rasband, W.S. ImageJ v1.46b <<http://rsb.info.nih.gov/ij/> (US National Institutes of Health, Bethesda, Maryland, –1997–2012).

  20. 20

    Sveen, J.K. An introduction to MatPIV (Mechanics and Applied Mathematics no. 2) <http://folk.uio.no/jks/matpiv/> (Department of Math, University of Oslo, 2004).

Download references

Acknowledgements

It's a pleasure to thank L. Selfors, K. Simpson and J. Brugge (Harvard University) for giving us full access to their data. We thank A. Gautreau (Laboratoire d'Enzymologie et de Biologie Structurale, Gif-sur-Yvette) for the gift of the anti-Wave2 antibody, J.K. Sveen for fruitful discussions and H. Yevick for a critical reading of the manuscript. Financial support from the Association pour la Recherche sur le Cancer, the Agence Nationale de la Recherche (project IntegRal), the Association Christelle Bouillot, the Ligue Contre le Cancer and the Institut Curie Program 'Modèles Cellulaires' is gratefully acknowledged.

Author information

Correspondence to Jacques Camonis or Pascal Silberzan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1 and 2 and Supplementary Discussions 1 and 2 (PDF 1789 kb)

Supplementary Software

AVeMap source code. (ZIP 1060 kb)

HEK control.

Wound-healing with control HEK-HT cells. Total film duration: 16 h. Acquisitions were made every 15 min. Images were acquired in phase-contrast mode. Total width of the observation field = 1.68 mm. (MOV 5112 kb)

HEK siWave2 (5 nM).

Wound-healing with HEK-HT cells depleted of Wave2 (siRNA concentration of 5 nM). Total film duration: 16 h. Acquisitions were made every 15 min. Images were acquired in phase-contrast mode. Total width of the observation field = 1.68 mm. (MOV 5360 kb)

HEK siWave2 (2 nM).

Wound-healing with HEK-HT cells depleted of Wave2 (siRNA concentration of 2 nM). Total film duration: 16 h. Acquisitions were made every 15 min. Images were acquired in phase-contrast mode. Total width of the observation field = 1.68 mm. (MOV 8705 kb)

A549 control.

Wound-healing with A549 cells. Total film duration: 16 h. Acquisitions were made every 15 min. Images were acquired in phase-contrast mode. Total width of the observation field = 1.68 mm. (MOV 5256 kb)

A549 TGF-β.

Wound-healing with A549 cells in the presence of TGF-β. Total film duration: 16 h. Acquisitions were made every 15 min. Images were acquired in phase-contrast mode. Total width of the observation field = 1.68 mm. (MOV 6858 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Deforet, M., Parrini, M., Petitjean, L. et al. Automated velocity mapping of migrating cell populations (AVeMap). Nat Methods 9, 1081–1083 (2012) doi:10.1038/nmeth.2209

Download citation

Further reading