Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Improving FRET dynamic range with bright green and red fluorescent proteins

Abstract

A variety of genetically encoded reporters use changes in fluorescence (or Förster) resonance energy transfer (FRET) to report on biochemical processes in living cells. The standard genetically encoded FRET pair consists of CFPs and YFPs, but many CFP-YFP reporters suffer from low FRET dynamic range, phototoxicity from the CFP excitation light and complex photokinetic events such as reversible photobleaching and photoconversion. We engineered two fluorescent proteins, Clover and mRuby2, which are the brightest green and red fluorescent proteins to date and have the highest Förster radius of any ratiometric FRET pair yet described. Replacement of CFP and YFP with these two proteins in reporters of kinase activity, small GTPase activity and transmembrane voltage significantly improves photostability, FRET dynamic range and emission ratio changes. These improvements enhance detection of transient biochemical events such as neuronal action-potential firing and RhoA activation in growth cones.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assessment of FRET reporter performance using Förster equations and emission spectra.
Figure 2: Clover-mRuby2 and ECFP-Venus responses in the CaMKIIα reporter Camuiα.
Figure 3: Clover-mRuby2 FRET in voltage sensing.
Figure 4: Reporting of fast local RhoA activation in neurons with Raichu-RhoA-CR.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

Referenced accessions

Protein Data Bank

References

  1. Reiff, D.F. et al. In vivo performance of genetically encoded indicators of neural activity in flies. J. Neurosci. 25, 4766–4778 (2005).

    Article  CAS  Google Scholar 

  2. Shaner, N.C. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5, 545–551 (2008).

    Article  CAS  Google Scholar 

  3. Sinnecker, D., Voigt, P., Hellwig, N. & Schaefer, M. Reversible photobleaching of enhanced green fluorescent proteins. Biochemistry 44, 7085–7094 (2005).

    Article  CAS  Google Scholar 

  4. Raarup, M.K. et al. Enhanced yellow fluorescent protein photoconversion to a cyan fluorescent protein-like species is sensitive to thermal and diffusion conditions. J. Biomed. Opt. 14, 034039 (2009).

    Article  Google Scholar 

  5. Malkani, N. & Schmid, J.A. Some secrets of fluorescent proteins: distinct bleaching in various mounting fluids and photoactivation of cyan fluorescent proteins at YFP-excitation. PLoS ONE 6, e18586 (2011).

    Article  CAS  Google Scholar 

  6. Dixit, R. & Cyr, R. Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. Plant J. 36, 280–290 (2003).

    Article  CAS  Google Scholar 

  7. Hockberger, P.E. et al. Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells. Proc. Natl. Acad. Sci. USA 96, 6255–6260 (1999).

    Article  CAS  Google Scholar 

  8. Komatsu, N. et al. Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol. Biol. Cell 22, 4647–4656 (2011).

    Article  CAS  Google Scholar 

  9. Kwok, S. et al. Genetically encoded probe for fluorescence lifetime imaging of CaMKII activity. Biochem. Biophys. Res. Commun. 369, 519–525 (2008).

    Article  CAS  Google Scholar 

  10. Mutoh, H. et al. Spectrally-resolved response properties of the three most advanced FRET based fluorescent protein voltage probes. PLoS ONE 4, e4555 (2009).

    Article  Google Scholar 

  11. Piston, D.W. & Kremers, G.J. Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem. Sci. 32, 407–414 (2007).

    Article  CAS  Google Scholar 

  12. van der Krogt, G.N., Ogink, J., Ponsioen, B. & Jalink, K. A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the Epac cAMP sensor as an example. PLoS ONE 3, e1916 (2008).

    Article  Google Scholar 

  13. Yasuda, R. et al. Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging. Nat. Neurosci. 9, 283–291 (2006).

    Article  CAS  Google Scholar 

  14. Tsutsui, H., Karasawa, S., Okamura, Y. & Miyawaki, A. Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat. Methods 5, 683–685 (2008).

    Article  CAS  Google Scholar 

  15. Shcherbo, D. et al. Practical and reliable FRET/FLIM pair of fluorescent proteins. BMC Biotechnol. 9, 24 (2009).

    Article  Google Scholar 

  16. Goedhart, J., Vermeer, J.E., Adjobo-Hermans, M.J., van Weeren, L. & Gadella, T.W.J. Sensitive detection of p65 homodimers using red-shifted and fluorescent protein-based FRET couples. PLoS ONE 2, e1011 (2007).

    Article  Google Scholar 

  17. Piljic, A. & Schultz, C. Simultaneous recording of multiple cellular events by FRET. ACS Chem. Biol. 3, 156–160 (2008).

    Article  CAS  Google Scholar 

  18. Kremers, G.J., Hazelwood, K.L., Murphy, C.S., Davidson, M.W. & Piston, D.W. Photoconversion in orange and red fluorescent proteins. Nat. Methods 6, 355–358 (2009).

    Article  CAS  Google Scholar 

  19. Harvey, C.D. et al. A genetically encoded fluorescent sensor of ERK activity. Proc. Natl. Acad. Sci. USA 105, 19264–19269 (2008).

    Article  CAS  Google Scholar 

  20. Kredel, S. et al. mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures. PLoS ONE 4, e4391 (2009).

    Article  Google Scholar 

  21. Takao, K. et al. Visualization of synaptic Ca2+/calmodulin-dependent protein kinase II activity in living neurons. J. Neurosci. 25, 3107–3112 (2005).

    Article  CAS  Google Scholar 

  22. Zhang, J., Hupfeld, C.J., Taylor, S.S., Olefsky, J.M. & Tsien, R.Y. Insulin disrupts beta-adrenergic signalling to protein kinase A in adipocytes. Nature 437, 569–573 (2005).

    Article  CAS  Google Scholar 

  23. Yoshizaki, H. et al. Activity of Rho-family GTPases during cell division as visualized with FRET-based probes. J. Cell Biol. 162, 223–232 (2003).

    Article  CAS  Google Scholar 

  24. Monici, M. Cell and tissue autofluorescence research and diagnostic applications. Biotechnol. Annu. Rev. 11, 227–256 (2005).

    Article  CAS  Google Scholar 

  25. Ormö, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).

    Article  Google Scholar 

  26. Kennis, J.T. et al. Uncovering the hidden ground state of green fluorescent protein. Proc. Natl. Acad. Sci. USA 101, 17988–17993 (2004).

    Article  CAS  Google Scholar 

  27. Brejc, K. et al. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc. Natl. Acad. Sci. USA 94, 2306–2311 (1997).

    Article  CAS  Google Scholar 

  28. Henderson, J.N. et al. Structure and mechanism of the photoactivatable green fluorescent protein. J. Am. Chem. Soc. 131, 4176–4177 (2009).

    Article  CAS  Google Scholar 

  29. Pédelacq, J.D., Cabantous, S., Tran, T., Terwilliger, T.C. & Waldo, G.S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    Article  Google Scholar 

  30. Goedhart, J. et al. Bright cyan fluorescent protein variants identified by fluorescence lifetime screening. Nat. Methods 7, 137–139 (2010).

    Article  CAS  Google Scholar 

  31. Lin, M.Z. et al. Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem. Biol. 16, 1169–1179 (2009).

    Article  CAS  Google Scholar 

  32. Kredel, S. et al. Optimized and far-red-emitting variants of fluorescent protein eqFP611. Chem. Biol. 15, 224–233 (2008).

    Article  CAS  Google Scholar 

  33. Aoki, K. & Matsuda, M. Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors. Nat. Protoc. 4, 1623–1631 (2009).

    Article  CAS  Google Scholar 

  34. Kotera, I., Iwasaki, T., Imamura, H., Noji, H. & Nagai, T. Reversible dimerization of Aequorea victoria fluorescent proteins increases the dynamic range of FRET-based indicators. ACS Chem. Biol. 5, 215–222 (2010).

    Article  CAS  Google Scholar 

  35. Sakai, R., Repunte-Canonigo, V., Raj, C.D. & Knöpfel, T. Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur. J. Neurosci. 13, 2314–2318 (2001).

    Article  CAS  Google Scholar 

  36. Lundby, A., Mutoh, H., Dimitrov, D., Akemann, W. & Knöpfel, T. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS ONE 3, e2514 (2008).

    Article  Google Scholar 

  37. Akemann, W., Middleton, S.J. & Knöpfel, T. Optical imaging as a link between cellular neurophysiology and circuit modeling. Front. Cell. Neurosci. 3, 5 (2009).

    Article  Google Scholar 

  38. Lundby, A., Akemann, W. & Knöpfel, T. Biophysical characterization of the fluorescent protein voltage probe VSFP2.3 based on the voltage-sensing domain of Ci-VSP. Eur. Biophys. J. 39, 1625–1635 (2010).

    Article  CAS  Google Scholar 

  39. Wilt, B.A., Fitzgerald, J.E. & Schnitzer, M.J. Photon shot-noise limits on optical detection of neuronal spikes and estimation of spike timing. Biophys. J. (in the press).

  40. Wahl, S., Barth, H., Ciossek, T., Aktories, K. & Mueller, B.K. Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J. Cell Biol. 149, 263–270 (2000).

    Article  CAS  Google Scholar 

  41. Shamah, S.M. et al. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105, 233–244 (2001).

    Article  CAS  Google Scholar 

  42. Nestor, M.W., Mok, L.P., Tulapurkar, M.E. & Thompson, S.M. Plasticity of neuron-glial interactions mediated by astrocytic EphARs. J. Neurosci. 27, 12817–12828 (2007).

    Article  CAS  Google Scholar 

  43. Nakamura, T., Aoki, K. & Matsuda, M. Monitoring spatio-temporal regulation of Ras and Rho GTPase with GFP-based FRET probes. Methods 37, 146–153 (2005).

    Article  CAS  Google Scholar 

  44. Goedhart, J. et al. Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat. Commun. 3, 751 (2012).

    Article  Google Scholar 

  45. Kralj, J.M., Douglass, A.D., Hochbaum, D.R., Maclaurin, D. & Cohen, A.E. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9, 90–95 (2012).

    Article  CAS  Google Scholar 

  46. Akemann, W. et al. Imaging neural circuit dynamics with a voltage-sensitive fluorescent protein. J. Neurophysiol. published online, doi:10.1152/jn.00452.2012 (18 July 2012).

  47. Day, R.N. & Davidson, M.W. The fluorescent protein palette: tools for cellular imaging. Chem. Soc. Rev. 38, 2887–2921 (2009).

    Article  CAS  Google Scholar 

  48. Cormack, B.P., Valdivia, R.H. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996).

    Article  CAS  Google Scholar 

  49. Merzlyak, E.M. et al. Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat. Methods 4, 555–557 (2007).

    Article  CAS  Google Scholar 

  50. Mori, M.X., Imai, Y., Itsuki, K. & Inoue, R. Quantitative measurement of Ca2+-dependent calmodulin-target binding by Fura-2 and CFP and YFP FRET imaging in living cells. Biochemistry 50, 4685–4696 (2011).

    Article  CAS  Google Scholar 

  51. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Computer control of microscopes using μManager. Curr. Protoc. Mol. Biol. 92, 14.20 (2010).

    Google Scholar 

Download references

Acknowledgements

We thank Y. Hayashi (RIKEN Brain Science Institute) for the Camuiα plasmid, J. Zhang (John Hopkins Medicine) for the AKAR2 plasmid, M. Matsuda (Kyoto University) for the Raichu-RhoA plasmid and P. Ramasamy (Stanford University) for the pcDNA3.1/Puro-CAG plasmid. We thank N. Desai for help with cloning of the voltage sensors, members of the Lin laboratory for helpful discussion, and M.E. Greenberg (Harvard Medical School) for advice and resources during axon guidance experiments. This work was supported by the Burroughs Wellcome Fund (M.Z.L.), a Stanford University Bio-X Interdisciplinary Initiatives Project grant (M.Z.L. and M.J.S.), a Siebel Foundation Scholarship (A.J.L.), the Stanford CNC Program (Y.G., J.D.M. and M.J.S.), the National Academy of Sciences Keck Futures Initiative (Y.G., J.D.M. and M.J.S.), National Science Foundation grant 1134416 (M.Z.L.) and US National Institutes of Health grants R01NS076860 (M.Z.L.) and 4R37NS027177-23 (R.Y.T.). M.Z.L. is a Rita Allen Foundation Scholar.

Author information

Authors and Affiliations

Authors

Contributions

M.Z.L. conceived the study. A.J.L., F.S.-P., M.Z.L., Y.G. and J.D.M. designed and performed FRET experiments and analyzed data. M.R.M. and M.Z.L. created and characterized fluorescent protein variants. M.A.B. and M.W.D. created and characterized fluorescent protein targeting fusions. P.J.C. and M.W.D. performed live-cell photobleaching experiments. J.W. provided unique reagents. M.J.S. and R.Y.T. provided ideas and advice. A.J.L., F.S.-P., and M.Z.L. wrote the manuscript.

Corresponding author

Correspondence to Michael Z Lin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16 (PDF 12717 kb)

Complete time-lapse imaging series of the experiment in Fig. 4e demonstrates reporting of PKA by AKAR2-CR under continuous illumination.

Forskolin was added to 50 μM at time 0 to activate PKA in HEK293 cells expressing AKAR2-CR. Cells were continuously illuminated by 450–470 nm light from a 150-W xenon arc lamp passed through a 10% neutral-density filter, and emission filters were cycled between Clover and mRuby2 wavelengths as quickly as possible. Ratiometric images are shown, in which blue denotes a baseline-normalized mRuby2/Clover emission ratio of 0.8 and red an emission ratio of 1.6. (AVI 3248 kb)

Time-lapse imaging of RhoA activity during ephrin-A–induced growth-cone retraction in an embryonic cortical neuron.

Neurons expressing Raichu-RhoA-CR were treated at 1 d in vitro with 5 μg ml−1 preclustered ephrin-A5 at time 0 and images taken every 2 min. Ratiometric images are shown, in which blue denotes a baseline-normalized mRuby2/Clover emission ratio of 0.9 and red an emission ratio of 1.8. Asterisks mark locations of the growth cone showing transient ephrin-A–induced RhoA activity. (MOV 605 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, A., St-Pierre, F., Gong, Y. et al. Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9, 1005–1012 (2012). https://doi.org/10.1038/nmeth.2171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2171

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research