Ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke

Abstract

We describe a dual-trap force-clamp configuration that applies constant loads between a binding protein and an intermittently interacting biological polymer. The method has a measurement delay of only 10 μs, allows detection of interactions as brief as 100 μs and probes sub-nanometer conformational changes with a time resolution of tens of microseconds. We tested our method on molecular motors and DNA-binding proteins. We could apply constant loads to a single motor domain of myosin before its working stroke was initiated (0.2–1 ms), thus directly measuring its load dependence. We found that, depending on the applied load, myosin weakly interacted (<1 ms) with actin without production of movement, fully developed its working stroke or prematurely detached (<5 ms), thus reducing the working stroke size with load. Our technique extends single-molecule force-clamp spectroscopy and opens new avenues for investigating the effects of forces on biological processes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Present limits on time resolution owing to thermal noise.
Figure 2: Ultrafast force-clamp spectroscopy.
Figure 3: Implementation of ultrafast force-clamp spectroscopy on different biological systems.
Figure 4: Load-dependent kinetics of the actin-myosin interaction dissected with microsecond time resolution.
Figure 5: Measuring conformational changes with sub-nanometer spatial and microsecond temporal resolution: working stroke of skeletal muscle myosin under force.
Figure 6: Load dependence of myosin working stroke.

References

  1. 1

    Cecconi, C., Shank, E.A., Bustamante, C. & Marqusee, S. Direct observation of the three-state folding of a single protein molecule. Science 309, 2057–2060 (2005).

    CAS  Article  Google Scholar 

  2. 2

    Marshall, B.T. et al. Direct observation of catch bonds involving cell-adhesion molecules. Nature 423, 190–193 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Rief, M. et al. Myosin-V stepping kinetics: a molecular model for processivity. Proc. Natl. Acad. Sci. USA 97, 9482–9486 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Reconditi, M. et al. The myosin motor in muscle generates a smaller and slower working stroke at higher load. Nature 428, 578–581 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Laakso, J.M., Lewis, J.H., Shuman, H. & Ostap, E.M. Myosin I can act as a molecular force sensor. Science 321, 133–136 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Howard, J. Mechanics of Motor Proteins and the Cytoskeleton. (Sinauer Associates, Inc., 2001).

  7. 7

    Neuman, K.C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).

    CAS  Article  Google Scholar 

  8. 8

    Hinterdorfer, P. & Dufrene, Y.F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3, 347–355 (2006).

    CAS  Article  Google Scholar 

  9. 9

    Guo, B. & Guilford, W.H. Mechanics of actomyosin bonds in different nucleotide states are tuned to muscle contraction. Proc. Natl. Acad. Sci. USA 103, 9844–9849 (2006).

    CAS  Article  Google Scholar 

  10. 10

    Wiita, A.P. et al. Probing the chemistry of thioredoxin catalysis with force. Nature 450, 124–127 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Lang, M.J., Asbury, C.L., Shaevitz, J.W. & Block, S.M. An automated two-dimensional optical force clamp for single molecule studies. Biophys. J. 83, 491–501 (2002).

    CAS  Article  Google Scholar 

  12. 12

    Greenleaf, W.J., Woodside, M.T., Abbondanzieri, E.A. & Block, S.M. Passive all-optical force clamp for high-resolution laser trapping. Phys. Rev. Lett. 95, 208102 (2005).

    Article  Google Scholar 

  13. 13

    Litvinov, R.I., Shuman, H., Bennett, J.S. & Weisel, J.W. Binding strength and activation state of single fibrinogen-integrin pairs on living cells. Proc. Natl. Acad. Sci. USA 99, 7426–7431 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Visscher, K., Schnitzer, M.J. & Block, S.M. Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189 (1999).

    CAS  Article  Google Scholar 

  15. 15

    Abbondanzieri, E.A., Greenleaf, W.J., Shaevitz, J.W., Landick, R. & Block, S.M. Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460–465 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Finer, J.T., Simmons, R.M. & Spudich, J.A. Single myosin molecule mechanics: piconewton forces and nanometer steps. Nature 368, 113–119 (1994).

    CAS  Article  Google Scholar 

  17. 17

    Smith, D.A., Steffen, W., Simmons, R.M. & Sleep, J. Hidden-Markov methods for the analysis of single-molecule actomyosin displacement data: the variance-Hidden-Markov method. Biophys. J. 81, 2795–2816 (2001).

    CAS  Article  Google Scholar 

  18. 18

    Veigel, C., Molloy, J.E., Schmitz, S. & Kendrick-Jones, J. Load-dependent kinetics of force production by smooth muscle myosin measured with optical tweezers. Nat. Cell Biol. 5, 980–986 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Capitanio, M. et al. Two independent mechanical events in the interaction cycle of skeletal muscle myosin with actin. Proc. Natl. Acad. Sci. USA 103, 87–92 (2006).

    CAS  Article  Google Scholar 

  20. 20

    Takagi, Y., Homsher, E.E., Goldman, Y.E. & Shuman, H. Force generation in single conventional actomyosin complexes under high dynamic load. Biophys. J. 90, 1295–1307 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Kaya, M. & Higuchi, H. Nonlinear elasticity and an 8-nm working stroke of single myosin molecules in myofilaments. Science 329, 686–689 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Capitanio, M., Cicchi, R. & Pavone, F.S. Position control and optical manipulation for nanotechnology applications. Eur. Phys. J. B 46, 1–8 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Capitanio, M., Maggi, D., Vanzi, F. & Pavone, F. Fiona in the trap: the advantages of combining optical tweezers and fluorescence. J. Opt. A 9, S157 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Molloy, J.E., Burns, J.E., Kendrick-Jones, J., Tregear, R.T. & White, D.C.S. Movement and force produced by a single myosin head. Nature 378, 209–212 (1995).

    CAS  Article  Google Scholar 

  25. 25

    Lewalle, A., Steffen, W., Stevenson, O., Ouyang, Z. & Sleep, J. Single-molecule measurement of the stiffness of the rigor myosin head. Biophys. J. 94, 2160–2169 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Nyitrai, M. & Geeves, M.A. Adenosine diphosphate and strain sensitivity in myosin motors. Phil. Trans. R. Soc. Lond. B 359, 1867–1877 (2004).

    CAS  Article  Google Scholar 

  27. 27

    Dantzig, J.A., Hibberd, M.G., Trentham, D.R. & Goldman, Y.E. Cross-bridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibres. J. Physiol. (Lond.) 432, 639–680 (1991).

    CAS  Article  Google Scholar 

  28. 28

    Brenner, B. Rapid dissociation and reassociation of actomyosin cross-bridges during force generation: a newly observed facet of cross-bridge action in muscle. Proc. Natl. Acad. Sci. USA 88, 10490–10494 (1991).

    CAS  Article  Google Scholar 

  29. 29

    Geeves, M.A. The dynamics of actin and myosin association and the crossbridge model of muscle contraction. Biochem. J. 274, 1–14 (1991).

    CAS  Article  Google Scholar 

  30. 30

    Iwaki, M., Iwane, A.H., Shimokawa, T., Cooke, R. & Yanagida, T. Brownian search-and-catch mechanism for myosin-VI steps. Nat. Chem. Biol. 5, 403–405 (2009).

    CAS  Article  Google Scholar 

  31. 31

    Piazzesi, G., Lucii, L. & Lombardi, V. The size and the speed of the working stroke of muscle myosin and its dependence on the force. J. Physiol. (Lond.) 545, 145–151 (2002).

    CAS  Article  Google Scholar 

  32. 32

    Berg, O.G., Winter, R.B. & von Hippel, P.H. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20, 6929–6948 (1981).

    CAS  Article  Google Scholar 

  33. 33

    deCastro, M.J., Fondecave, R.M., Clarke, L.A., Schmidt, C.F. & Stewart, R.J. Working strokes by single molecules of the kinesin-related microtubule motor ncd. Nat. Cell Biol. 2, 724–729 (2000).

    CAS  Article  Google Scholar 

  34. 34

    Pease, P.J. et al. Sequence-directed DNA translocation by purified FtsK. Science 307, 586–590 (2005).

    CAS  Article  Google Scholar 

  35. 35

    Crozat, E. et al. Separating speed and ability to displace roadblocks during DNA translocation by FtsK. EMBO J. 29, 1423–1433 (2010).

    CAS  Article  Google Scholar 

  36. 36

    Slutsky, M. & Mirny, L.A. Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential. Biophys. J. 87, 4021–4035 (2004).

    CAS  Article  Google Scholar 

  37. 37

    Friedman, L.J. & Gelles, J. Mechanism of transcription initiation at an activator-dependent promoter defined by single-molecule observation. Cell 148, 679–689 (2012).

    CAS  Article  Google Scholar 

  38. 38

    Skinner, G.M., Baumann, C.G., Quinn, D.M., Molloy, J.E. & Hoggett, J.G. Promoter binding, initiation, and elongation by bacteriophage T7 RNA polymerase. A single-molecule view of the transcription cycle. J. Biol. Chem. 279, 3239–3244 (2004).

    CAS  Article  Google Scholar 

  39. 39

    Tang, G.Q., Roy, R., Bandwar, R.P., Ha, T. & Patel, S.S. Real-time observation of the transition from transcription initiation to elongation of the RNA polymerase. Proc. Natl. Acad. Sci. USA 106, 22175–22180 (2009).

    CAS  Article  Google Scholar 

  40. 40

    Canepari, M. et al. Functional diversity between orthologous myosins with minimal sequence diversity. J. Muscle Res. Cell Motil. 21, 375–382 (2000).

    CAS  Article  Google Scholar 

  41. 41

    Zhan, H., Swint-Kruse, L. & Matthews, K.S. Extrinsic interactions dominate helical propensity in coupled binding and folding of the lactose repressor protein hinge helix. Biochemistry 45, 5896–5906 (2006).

    CAS  Article  Google Scholar 

  42. 42

    Smith, S.B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).

    CAS  Article  Google Scholar 

  43. 43

    Capitanio, M., Normanno, D. & Pavone, F.S. High-precision measurements of light-induced torque on absorbing microspheres. Opt. Lett. 29, 2231–2233 (2004).

    Article  Google Scholar 

  44. 44

    Capitanio, M. et al. Calibration of optical tweezers with differential interference contrast signals. Rev. Sci. Instrum. 73, 1687–1696 (2002).

    CAS  Article  Google Scholar 

  45. 45

    Capitanio, M., Cicchi, R. & Pavone, F.S. Continuous and time-shared multiple optical tweezers for the study of single motor proteins. Opt. Lasers Eng. 45, 450–457 (2007).

    Article  Google Scholar 

  46. 46

    Colquhoun, D. & Sigworth, F.J. Single-Channel Recording (Plenum Press, New York, 1983).

  47. 47

    Vanzi, F., Sacconi, L. & Pavone, F.S. Analysis of kinetics in noisy systems: application to single molecule tethered particle motion. Biophys. J. 93, 21–36 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank G. Belcastro for his help with Lac repressor experiments, M. Giuntini for quadrant detector photodiode electronics, and V. Lombardi and L. Gardini for discussion. This research was funded by the EU Seventh Framework Programme (FP7/2007-2013; grant agreements B0 211383, B0 228334 and B0 241526), by the Italian Ministry of University and Research (PRIN 2006 2006051323_003, FIRB 2011 RBAP11X42L006 and Flagship Project NANOMAX) and by Ente Cassa di Risparmio di Firenze to F.S.P. and by the EU Seventh Framework Programme (FP7/2007-2013; grant agreement 223576, Combating age-related muscle weakness (MYOAGE)) to R.B.

Author information

Affiliations

Authors

Contributions

M. Capitanio conceived and designed the ultrafast force clamp, performed experiments, analyzed data and wrote the paper. M.M. prepared samples and contributed to myosin experiments. D.B. contributed to setting up the ultrafast force clamp and performing myosin experiments. C.M. prepared samples and performed LacI experiments. F.V. supervised LacI experiments and wrote the paper. R.B. and M. Canepari supervised myosin experiments. R.B. contributed to writing the paper. F.S.P. supervised the design of the ultrafast force-clamp experiments and the whole project.

Corresponding author

Correspondence to Marco Capitanio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Notes 1–8, Supplementary Results (PDF 1616 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Capitanio, M., Canepari, M., Maffei, M. et al. Ultrafast force-clamp spectroscopy of single molecules reveals load dependence of myosin working stroke. Nat Methods 9, 1013–1019 (2012). https://doi.org/10.1038/nmeth.2152

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing