Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rational design of true monomeric and bright photoactivatable fluorescent proteins

Abstract

Monomeric (m)Eos2 is an engineered photoactivatable fluorescent protein widely used for super-resolution microscopy. We show that mEos2 forms oligomers at high concentrations and forms aggregates when labeling membrane proteins, limiting its application as a fusion partner. We solved the crystal structure of tetrameric mEos2 and rationally designed improved versions, mEos3.1 and mEos3.2, that are truly monomeric, are brighter, mature faster and exhibit higher photon budget and label density.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: mEos3.1 and 2 are true monomeric fluorescent proteins.
Figure 2: Comparing the label density and Nyquist resolution of EosFP variants and mClavGR2.

Accession codes

Accessions

Protein Data Bank

References

  1. Betzig, E. et al. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  2. Hess, S.T., Girirajan, T.P. & Mason, M.D. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  Google Scholar 

  3. Rust, M.J., Bates, M. & Zhuang, X. Nat. Methods 3, 793–795 (2006).

    Article  CAS  Google Scholar 

  4. Huang, B., Bates, M. & Zhuang, X. Annu. Rev. Biochem. 78, 993–1016 (2009).

    Article  CAS  Google Scholar 

  5. Wiedenmann, J. et al. Proc. Natl. Acad. Sci. USA 101, 15905–15910 (2004).

    Article  CAS  Google Scholar 

  6. Lippincott-Schwartz, J. & Patterson, G.H. Trends Cell Biol. 19, 555–565 (2009).

    Article  CAS  Google Scholar 

  7. McKinney, S.A., Murphy, C.S., Hazelwood, K.L., Davidson, M.W. & Looger, L.L. Nat. Methods 6, 131–133 (2009).

    Article  CAS  Google Scholar 

  8. Nienhaus, G.U. et al. Photochem. Photobiol. 82, 351–358 (2006).

    Article  CAS  Google Scholar 

  9. Hoi, H. et al. J. Mol. Biol. 401, 776–791 (2010).

    Article  CAS  Google Scholar 

  10. Zacharias, D.A., Violin, J.D., Newton, A.C. & Tsien, R.Y. Science 296, 913–916 (2002).

    Article  CAS  Google Scholar 

  11. Ando, R., Mizuno, H. & Miyawaki, A. Science 306, 1370–1373 (2004).

    Article  CAS  Google Scholar 

  12. Fuchs, J. et al. Nat. Methods 7, 627–630 (2010).

    Article  CAS  Google Scholar 

  13. Shroff, H., Galbraith, C.G., Galbraith, J.A. & Betzig, E. Nat. Methods 5, 417–423 (2008).

    Article  CAS  Google Scholar 

  14. Jones, S.A., Shim, S.H., He, J. & Zhuang, X. Nat. Methods 8, 499–508 (2011).

    Article  CAS  Google Scholar 

  15. Riedl, J. et al. Nat. Methods 5, 605–607 (2008).

    Article  CAS  Google Scholar 

  16. Wiedenmann, J. et al. J. Biophotonics 4, 377–390 (2011).

    Article  CAS  Google Scholar 

  17. Bai, L. et al. Cell Metab. 5, 47–57 (2007).

    Article  CAS  Google Scholar 

  18. Chudakov, D.M. et al. Nat. Biotechnol. 22, 1435–1439 (2004).

    Article  CAS  Google Scholar 

  19. Subach, O.M. et al. Nat. Methods 8, 771–777 (2011).

    Article  CAS  Google Scholar 

  20. Shaner, N.C. et al. Nat. Methods 5, 545–551 (2008).

    Article  CAS  Google Scholar 

  21. Ji, W. et al. Proc. Natl. Acad. Sci. USA 105, 13668–13673 (2008).

    Article  CAS  Google Scholar 

  22. Li, Z. et al. J. Biol. Chem. 282, 29448–29456 (2007).

    Article  CAS  Google Scholar 

  23. Xu, P. et al. Biochem. Biophys. Res. Commun. 350, 969–976 (2006).

    Article  CAS  Google Scholar 

  24. Shroff, H. et al. Proc. Natl. Acad. Sci. USA 104, 20308–20313 (2007).

    Article  CAS  Google Scholar 

  25. Olivo-Marin, J.C. Pattern Recognit. 35, 1989–1996 (2002).

    Article  Google Scholar 

  26. Smith, C.S., Joseph, N., Rieger, B. & Lidke, K.A. Nat. Methods 7, 373–375 (2010).

    Article  CAS  Google Scholar 

  27. Thompson, R.E., Larson, D.R. & Webb, W.W. Biophys. J. 82, 2775–2783 (2002).

    Article  CAS  Google Scholar 

  28. Grotjohann, T. et al. Nature 478, 204–208 (2011).

    Article  CAS  Google Scholar 

  29. Annibale, P., Scarselli, M., Kodiyan, A. & Radenovic, A. J. Phys. Chem. Lett. 1, 1506–1510 (2010).

    Article  CAS  Google Scholar 

  30. Annibale, P., Vanni, S., Scarselli, M., Rothlisberger, U. & Radenovic, A. Nat. Methods 8, 527–528 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L.L. Looger (Janelia Farm Research Campus) and Addgene for providing mEos2 cDNA, and X. Yu for providing technical support of analytical ultracentrifugation. This work was supported by grants from the Major State Basic Research Program of the People's Republic of China (2010CB833701 and 2010CB912303), the National Science Foundation of China (31130065, 31170818, 90913022 and 31127901), projects from Chinese Academy of Sciences (YZ200838, KSCX1-1W-J-3 and KSCX2-EW-Q-11), and the talent introduction program to Universities (B08029).

Author information

Authors and Affiliations

Authors

Contributions

M.Z., H.C., Y.Z., J.Y., W.J., J.C., B.L. and J.L. performed the research; L.W. and Y.L. assisted with data collection and solved the mEos2 structure; J.Z. assisted with spectrum measurement; M.Z., H.C., Y.Z., P.X. and T.X. analyzed data; T.X. and P.X. designed the research and wrote the paper.

Corresponding authors

Correspondence to Pingyong Xu or Tao Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–17 and Supplementary Tables 1–7 (PDF 2305 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, M., Chang, H., Zhang, Y. et al. Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9, 727–729 (2012). https://doi.org/10.1038/nmeth.2021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2021

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing