Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A simple, versatile method for GFP-based super-resolution microscopy via nanobodies

Abstract

We developed a method to use any GFP-tagged construct in single-molecule super-resolution microscopy. By targeting GFP with small, high-affinity antibodies coupled to organic dyes, we achieved nanometer spatial resolution and minimal linkage error when analyzing microtubules, living neurons and yeast cells. We show that in combination with libraries encoding GFP-tagged proteins, virtually any known protein can immediately be used in super-resolution microscopy and that simplified labeling schemes allow high-throughput super-resolution imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-molecule nanoscopy by detection of GFP via nanobodies.
Figure 2: Single-molecule nanoscopy of proteins from a budding yeast GFP-fusion construct library.

Similar content being viewed by others

References

  1. Betzig, E. et al. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  2. Rust, M.J., Bates, M. & Zhuang, X. Nat. Methods 3, 793–795 (2006).

    Article  CAS  Google Scholar 

  3. Heilemann, M. et al. Angew. Chem. Int. Edn. Engl. 47, 6172–6176 (2008).

    Article  CAS  Google Scholar 

  4. Fölling, J. et al. Nat. Methods 5, 943–945 (2008).

    Article  Google Scholar 

  5. Rothbauer, U. et al. Nat. Methods 3, 887–889 (2006).

    Article  CAS  Google Scholar 

  6. Bates, M., Blosser, T.R. & Zhuang, X. Phys. Rev. Lett. 94, 108101 (2005).

    Article  Google Scholar 

  7. Heilemann, M., Margeat, E., Kasper, R., Sauer, M. & Tinnefeld, P. J. Am. Chem. Soc. 127, 3801–3806 (2005).

    Article  CAS  Google Scholar 

  8. Juette, M.F. et al. Nat. Methods 5, 527–529 (2008).

    Article  CAS  Google Scholar 

  9. Manley, S. et al. Nat. Methods 5, 155–157 (2008).

    Article  CAS  Google Scholar 

  10. Huh, W.-K. et al. Nature 425, 686–691 (2003).

    Article  CAS  Google Scholar 

  11. Hartwell, L.H. Exp. Cell Res. 69, 265–276 (1971).

    Article  CAS  Google Scholar 

  12. Baddeley, D. et al. PLoS ONE 6, e20645 (2011).

    Article  CAS  Google Scholar 

  13. Byers, B. & Goetsch, L. J. Cell Biol. 69, 717–721 (1976).

    Article  CAS  Google Scholar 

  14. Cid, V.J., Adamiková, L., Sánchez, M., Molina, M. & Nombela, C. Microbiology 147, 1437–1450 (2001).

    Article  CAS  Google Scholar 

  15. Chen, H., Howell, A.S., Robeson, A. & Lew, D.J. Biol. Chem. 392, 689–697 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaech, S. & Banker, G. Nat. Protoc. 1, 2406–2415 (2006).

    Article  CAS  Google Scholar 

  17. Amberg, D.C., Burke, D. & Strathern, J.N. Methods in Yeast Genetics. (Cold Spring Harbor Laboratory Press, 2005).

  18. Edelstein, A., Amodaj, N., Hoover, K., Vale, R. & Stuurman, N. Curr. Protoc. Mol. Biol. 14.20 (2010).

  19. Schoen, I., Ries, J., Klotzsch, E., Ewers, H. & Vogel, V. Nano Lett. 11, 4008–4011 (2011).

    Article  CAS  Google Scholar 

  20. Smith, C.S., Joseph, N., Rieger, B. & Lidke, K.A. Nat. Methods 7, 373–375 (2010).

    Article  CAS  Google Scholar 

  21. Juette, M.F. & Bewersdorf, J. Nano Lett. 10, 4657–4663 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Marie Curie Intra-European Fellowship (J.R.) the National Center for Competence in Biomedical Imaging and the National Center for Competence in Research 'Neural Plasticity and Repair'. We thank Y. Barral and members of the Barral laboratory for useful discussions, help with yeast strains and access to the yeast genomic GFP-fusion library, R. Dechant for help with elutriation and M. Stoeber for help with Amaxa transfection.

Author information

Authors and Affiliations

Authors

Contributions

H. Ewers conceived of the project; J.R., C.K., E.P. and H. Ewers designed experiments; J.R., C.K., E.P., H. Eghlidi & H. Ewers performed and analyzed experiments; H. Ewers and J.R. wrote the paper.

Corresponding author

Correspondence to Helge Ewers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Note (PDF 3815 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ries, J., Kaplan, C., Platonova, E. et al. A simple, versatile method for GFP-based super-resolution microscopy via nanobodies. Nat Methods 9, 582–584 (2012). https://doi.org/10.1038/nmeth.1991

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1991

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing