Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Faster STORM using compressed sensing

Abstract

In super-resolution microscopy methods based on single-molecule switching, the rate of accumulating single-molecule activation events often limits the time resolution. Here we developed a sparse-signal recovery technique using compressed sensing to analyze images with highly overlapping fluorescent spots. This method allows an activated fluorophore density an order of magnitude higher than what conventional single-molecule fitting methods can handle. Using this method, we demonstrated imaging microtubule dynamics in living cells with a time resolution of 3 s.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STORM image analysis using compressed sensing.
Figure 2: Experimental STORM images using compressed sensing.

Similar content being viewed by others

References

  1. Huang, B., Babcock, H. & Zhuang, X. Cell 143, 1047–1058 (2010).

    Article  CAS  Google Scholar 

  2. Hell, S.W. Nat. Methods 6, 24–32 (2009).

    Article  CAS  Google Scholar 

  3. Rust, M.J., Bates, M. & Zhuang, X. Nat. Methods 3, 793–795 (2006).

    Article  CAS  Google Scholar 

  4. Betzig, E. et al. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  5. Hess, S.T., Girirajan, T.P.K. & Mason, M.D. Biophys. J. 91, 4258–4272 (2006).

    Article  CAS  Google Scholar 

  6. Shroff, H., Galbraith, C.G., Galbraith, J.A. & Betzig, E. Nat. Methods 5, 417–423 (2008).

    Article  CAS  Google Scholar 

  7. Jones, S.A., Shim, S.H., He, J. & Zhuang, X. Nat. Methods 8, 499–505 (2011).

    Article  CAS  Google Scholar 

  8. Holden, S.J., Uphoff, S. & Kapanidis, A.N. Nat. Methods 8, 279–280 (2011).

    Article  CAS  Google Scholar 

  9. Huang, F., Schwartz, S.L., Byars, J.M. & Lidke, K.A. Biomed. Opt. Express 2, 1377–1393 (2011).

    Article  Google Scholar 

  10. Quan, T. et al. Opt. Express 19, 16963–16974 (2011).

    Article  CAS  Google Scholar 

  11. Cox, S. et al. Nat. Methods 9, 195–200 (2012).

    Article  CAS  Google Scholar 

  12. Candès, E.J., Romberg, J. & Tao, T. IEEE Trans. Inf. Theory 52, 489–509 (2004).

    Article  Google Scholar 

  13. Zhu, L. et al. Phys. Med. Biol. 53, 6653–6672 (2008).

    Article  Google Scholar 

  14. Bates, M., Huang, B., Dempsey, G.T. & Zhuang, X. Science 317, 1749–1753 (2007).

    Article  CAS  Google Scholar 

  15. Huang, B., Wang, W., Bates, M. & Zhuang, X. Science 319, 810–813 (2008).

    Article  CAS  Google Scholar 

  16. Candès, E.J., Romberg, J. & Tao, T. Commun. Pure Appl. Math. 59, 1207–1223 (2005).

    Article  Google Scholar 

  17. Zhu, L. & Xing, L. Med. Phys. 36, 1895–1905 (2009).

    Article  Google Scholar 

  18. Mortensen, K.I., Churchman, L.S., Spudich, J.A. & Flyvbjerg, H. Nat. Methods 7, 377–381 (2010).

    Article  CAS  Google Scholar 

  19. Grant, M. & Boyd, S. CVX: Matlab software for disciplined convex programming, version 1.21 <http://cvxr.com/cvx> (2011).

  20. Huang, B., Jones, S.A., Brandenburg, B. & Zhuang, X. Nat. Methods 5, 1047–1052 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Griffis and R. Vale (University of California, San Francisco) for generously providing the mEos2-tubulin S2 cells, and Q. Fan (Georgia Institute of Technology) for running the DAOSTORM code. L.Z. receives support from US National Institutes of Health 1R21EB012700-01 A1. B.H. receives support from the UCSF Program for Breakthrough Biomedical Research, Searle Scholarship, and Packard Fellowship for Science and Engineering.

Author information

Authors and Affiliations

Authors

Contributions

L.Z. and B.H. conceived the project and developed the algorithms, W.Z. performed the experiments, D.E. and B.H. analyzed the data, and L.Z. and B.H. wrote the manuscript.

Corresponding authors

Correspondence to Lei Zhu or Bo Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Note (PDF 725 kb)

Supplementary Video 1

STORM 'movie' of microtubules in a living Drosophila S2 cell stably expressing mEos2-fused tubulin, with a time resolution of 3 seconds. The movie is reconstructed from 4,349 camera frames (77 seconds) and plays 11 times as fast as real time. Three snapshots from the movie are shown in Figure 2b. Scale bar, 1 μm. (MOV 1944 kb)

Supplementary Software

Matlab code for STORM data analysis using compressed sensing. (ZIP 221 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, L., Zhang, W., Elnatan, D. et al. Faster STORM using compressed sensing. Nat Methods 9, 721–723 (2012). https://doi.org/10.1038/nmeth.1978

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1978

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing