Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative fluorescence labeling of aldehyde-tagged proteins for single-molecule imaging

Abstract

A major hurdle for molecular mechanistic studies of many proteins is the lack of a general method for fluorescence labeling with high efficiency, specificity and speed. By incorporating an aldehyde motif genetically into a protein and improving the labeling kinetics substantially under mild conditions, we achieved fast, site-specific labeling of a protein with 100% efficiency while maintaining the biological function. We show that an aldehyde-tagged protein can be specifically labeled in cell extracts without protein purification and then can be used in single-molecule pull-down analysis. We also show the unique power of our method in single-molecule studies on the transient interactions and switching between two quantitatively labeled DNA polymerases on their processivity factor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development and validation of the quantitative fluorescence labeling of an aldehyde-tagged protein.
Figure 2: General applicability of labeling an aldehyde-tagged protein.
Figure 3: Specific and efficient labeling of unpurified Ald6N-DinB in cell extracts and single-molecule pull-down.
Figure 4: Real-time observation of the transient interactions and switching between PolBI and DinB.

Similar content being viewed by others

References

  1. Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C. & Ha, T. Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem. 77, 51–76 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Li, G.W. & Xie, X.S. Central dogma at the single-molecule level in living cells. Nature 475, 308–315 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ha, T. & Tinnefeld, P. Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. Annu. Rev. Phys. Chem. 63, 26.1–26.23 (2012).

    Article  Google Scholar 

  4. Gilmore, J.M., Scheck, R.A., Esser-Kahn, A.P., Joshi, N.S. & Francis, M.B. N-terminal protein modification through a biomimetic transamination reaction. Angew. Chem. Int. Edn Engl. 45, 5307–5311 (2006).

    Article  CAS  Google Scholar 

  5. Algire, M.A., Maag, D. & Lorsch, J.R. Pi release from eIF2, not GTP hydrolysis, is the step controlled by start-site selection during eukaryotic translation initiation. Mol. Cell 20, 251–262 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Sletten, E.M. & Bertozzi, C.R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Edn Engl. 48, 6974–6998 (2009).

    Article  CAS  Google Scholar 

  7. Adams, S.R. et al. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J. Am. Chem. Soc. 124, 6063–6076 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Lata, S., Gavutis, M., Tampe, R. & Piehler, J. Specific and stable fluorescence labeling of histidine-tagged proteins for dissecting multi-protein complex formation. J. Am. Chem. Soc. 128, 2365–2372 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Carrico, I.S., Carlson, B.L. & Bertozzi, C.R. Introducing genetically encoded aldehydes into proteins. Nat. Chem. Biol. 3, 321–322 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Wu, P. et al. Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proc. Natl. Acad. Sci. USA 106, 3000–3005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jain, A. et al. Probing cellular protein complexes using single-molecule pull-down. Nature 473, 484–488 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yeom, K.H. et al. Single-molecule approach to immunoprecipitated protein complexes: insights into miRNA uridylation. EMBO Rep. 12, 690–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yardimci, H., Loveland, A.B., Habuchi, S., van Oijen, A.M. & Walter, J.C. Uncoupling of sister replisomes during eukaryotic DNA replication. Mol. Cell 40, 834–840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hoskins, A.A. et al. Ordered and dynamic assembly of single spliceosomes. Science 331, 1289–1295 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, Y.H. et al. Biochemical and mutational analyses of a unique clamp loader complex in the archaeon Methanosarcina acetivorans. J. Biol. Chem. 280, 41852–41863 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Lin, L.J. et al. Molecular analyses of an unusual translesion DNA polymerase from Methanosarcina acetivorans C2A. J. Mol. Biol. 397, 13–30 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Dirksen, A., Hackeng, T.M. & Dawson, P.E. Nucleophilic catalysis of oxime ligation. Angew. Chem. Int. Edn Engl. 45, 7581–7584 (2006).

    Article  CAS  Google Scholar 

  18. Ha, T. et al. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. USA 93, 6264–6268 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roy, R., Hohng, S. & Ha, T. A practical guide to single-molecule FRET. Nat. Methods 5, 507–516 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kong, H., Kucera, R.B. & Jack, W.E. Characterization of a DNA polymerase from the hyperthermophile archaea Thermococcus litoralis. Vent DNA polymerase, steady state kinetics, thermal stability, processivity, strand displacement, and exonuclease activities. J. Biol. Chem. 268, 1965–1975 (1993).

    CAS  PubMed  Google Scholar 

  21. Galletto, R., Amitani, I., Baskin, R.J. & Kowalczykowski, S.C. Direct observation of individual RecA filaments assembling on single DNA molecules. Nature 443, 875–878 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Sternberg, S.H., Fei, J., Prywes, N., McGrath, K.A. & Gonzalez, R.L. Jr. Translation factors direct intrinsic ribosome dynamics during translation termination and ribosome recycling. Nat. Struct. Mol. Biol. 16, 861–868 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moldovan, G.L., Pfander, B. & Jentsch, S. PCNA, the maestro of the replication fork. Cell 129, 665–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Yang, W. & Woodgate, R. What a difference a decade makes: insights into translesion DNA synthesis. Proc. Natl. Acad. Sci. USA 104, 15591–15598 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Indiani, C., McInerney, P., Georgescu, R., Goodman, M.F. & O'Donnell, M. A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously. Mol. Cell 19, 805–815 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, J. et al. Single-molecule four-color FRET. Angew. Chem. Int. Edn Engl. 49, 9922–9925 (2010).

    Article  CAS  Google Scholar 

  27. Yin, J. et al. Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc. Natl. Acad. Sci. USA 102, 15815–15820 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou, Z. et al. Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. ACS Chem. Biol. 2, 337–346 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, G., Yoo, J., Leslie, B.J. & Ha, T. Single-molecule analysis reveals three phases of DNA degradation by an exonuclease. Nat. Chem. Biol. 7, 367–374 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fitzgerald, D.J. et al. Protein complex expression by using multigene baculoviral vectors. Nat. Methods 3, 1021–1032 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Berlier, J.E. et al. Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates. J. Histochem. Cytochem. 51, 1699–1712 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Shi, X., Lim, J. & Ha, T. Acidification of the oxygen scavenging system in single-molecule fluorescence studies: in situ sensing with a ratiometric dual-emission probe. Anal. Chem. 82, 6132–6138 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gill, S.C. & von Hippel, P.H. Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Lee, J.E. et al. A robust two-dimensional separation for top-down tandem mass spectrometry of the low-mass proteome. J. Am. Soc. Mass Spectrom. 20, 2183–2191 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Bertozzi (University of California, Berkeley) for providing the plasmid DNA for FGE through Addgene, J. Fei for the suggestion of using hydrophobic interaction chromatography, and K. Ragunathan for a critical reading of the manuscript. This work was supported by the US National Institutes of Health grants GM065367 and AI083025 (to T.H.) and the US National Science Foundation grants MCB-0238451 (to I.C.) and PHY-0822613 (to T.H.).

Author information

Authors and Affiliations

Authors

Contributions

X.S. and T.H. conceived the study; X.S. designed the experiments; X.S., Y.J., L.-J.L., C.L. and C.W. performed the experiments and analyzed the data; X.S., I.K.O.C. and T.H. wrote the manuscript.

Corresponding author

Correspondence to Taekjip Ha.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1, Supplementary Notes 1–6 (PDF 1020 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X., Jung, Y., Lin, LJ. et al. Quantitative fluorescence labeling of aldehyde-tagged proteins for single-molecule imaging. Nat Methods 9, 499–503 (2012). https://doi.org/10.1038/nmeth.1954

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1954

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing