Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrated nanopore sensing platform with sub-microsecond temporal resolution

Abstract

Nanopore sensors have attracted considerable interest for high-throughput sensing of individual nucleic acids and proteins without the need for chemical labels or complex optics. A prevailing problem in nanopore applications is that the transport kinetics of single biomolecules are often faster than the measurement time resolution. Methods to slow down biomolecular transport can be troublesome and are at odds with the natural goal of high-throughput sensing. Here we introduce a low-noise measurement platform that integrates a complementary metal-oxide semiconductor (CMOS) preamplifier with solid-state nanopores in thin silicon nitride membranes. With this platform we achieved a signal-to-noise ratio exceeding five at a bandwidth of 1 MHz, which to our knowledge is the highest bandwidth nanopore recording to date. We demonstrate transient signals as brief as 1 μs from short DNA molecules as well as current signatures during molecular passage events that shed light on submolecular DNA configurations in small nanopores.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The CNP.
Figure 2: Electrical modeling of a nanopore measurement.
Figure 3: Noise measurements.
Figure 4: Fast single-molecule events.
Figure 5: Fast nanopore event statistics (50 bp dsDNA and pore B).
Figure 6: Intra-event structure.

Similar content being viewed by others

References

  1. Weiss, S. Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999).

    Article  CAS  Google Scholar 

  2. Kasianowicz, J.J., Brandin, E., Branton, D. & Deamer, D.W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. USA 93, 13770–13773 (1996).

    Article  CAS  Google Scholar 

  3. Howorka, S. & Siwy, Z. Nanopore analytics: sensing of single molecules. Chem. Soc. Rev. 38, 2360–2384 (2009).

    Article  CAS  Google Scholar 

  4. Branton, D. et al. The potential and challenges of nanopore sequencing. Nat. Biotechnol. 26, 1146–1153 (2008).

    Article  CAS  Google Scholar 

  5. Venkatesan, B.M. & Bashir, R. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol. 6, 615–624 (2011).

    Article  CAS  Google Scholar 

  6. Cherf, G.M. et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-Å precision. Nat. Biotechnol advance online publication, doi:10.1038/nbt.2147 (14 February 2012).

  7. Wanunu, M. et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 5, 807–814 (2010).

    Article  CAS  Google Scholar 

  8. Sakmann, B. & Neher, E. Single-Channel Recording (Springer, 2009).

  9. Hille, B. Ion Channels of Excitable Membranes 3rd edn. (Sinauer, 2001).

  10. Derrington, I.M. et al. Nanopore DNA sequencing with MspA. Proc. Natl. Acad. Sci. USA 107, 16060–16065 (2010).

    Article  CAS  Google Scholar 

  11. Kowalczyk, S.W., Grosberg, A.Y., Rabin, Y. & Dekker, C. Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 22, 315101 (2011).

    Article  Google Scholar 

  12. Smeets, R., Keyser, U., Dekker, N. & Dekker, C. Noise in solid-state nanopores. Proc. Natl. Acad. Sci. USA 105, 417–421 (2008).

    Article  CAS  Google Scholar 

  13. Hoogerheide, D., Garaj, S. & Golovchenko, J. Probing surface charge fluctuations with solid-state nanopores. Phys. Rev. Lett. 102, 256804 (2009).

    Article  Google Scholar 

  14. Tabard-Cossa, V., Trivedi, D., Wiggin, M., Jetha, N.N. & Marziali, A. Noise analysis and reduction in solid-state nanopores. Nanotechnology 18, 305505 (2007).

    Article  Google Scholar 

  15. Dimitrov, V. et al. Nanopores in solid-state membranes engineered for single molecule detection. Nanotechnology 21, 065502 (2010).

    Article  CAS  Google Scholar 

  16. Ferrari, G., Gozzini, F., Molari, A. & Sampietro, M. Transimpedance amplifier for high sensitivity current measurements on nanodevices. IEEE J. Solid-State Circuits 44, 1609–1616 (2009).

    Article  Google Scholar 

  17. Heng, J.B. et al. Sizing DNA using a nanometer-diameter pore. Biophys. J. 87, 2905–2911 (2004).

    Article  CAS  Google Scholar 

  18. Wanunu, M., Sutin, J., McNally, B., Chow, A. & Meller, A. DNA translocation governed by interactions with solid-state nanopores. Biophys. J. 95, 4716–4725 (2008).

    Article  CAS  Google Scholar 

  19. Aksimentiev, A., Heng, J.B., Timp, G. & Schulten, K. Microscopic kinetics of DNA translocation through synthetic nanopores. Biophys. J. 87, 2086–2097 (2004).

    Article  CAS  Google Scholar 

  20. Heng, J.B. et al. Stretching DNA using the electric field in a synthetic nanopore. Nano Lett. 5, 1883–1888 (2005).

    Article  CAS  Google Scholar 

  21. Pedone, D., Firnkes, M. & Rant, U. Data analysis of translocation events in nanopore experiments. Anal. Chem. 81, 9689–9694 (2009).

    Article  CAS  Google Scholar 

  22. Li, J., Gershow, M., Stein, D., Brandin, E. & Golovchenko, J.a. DNA molecules and configurations in a solid-state nanopore microscope. Nat. Mater. 2, 611–615 (2003).

    Article  CAS  Google Scholar 

  23. Vercoutere, W. et al. Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nat. Biotechnol. 19, 248–252 (2001).

    Article  CAS  Google Scholar 

  24. Akeson, M., Branton, D., Kasianowicz, J.J., Brandin, E. & Deamer, D.W. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys. J. 77, 3227–3233 (1999).

    Article  CAS  Google Scholar 

  25. Shapovalov, G. & Lester, H.A. Gating transitions in bacterial ion channels measured at 3-microsecond resolution. J. Gen. Physiol. 124, 151–161 (2004).

    Article  CAS  Google Scholar 

  26. Tsutsui, M., Taniguchi, M., Yokota, K. & Kawai, T. Identifying single nucleotides by tunnelling current. Nat. Nanotechnol. 5, 286–290 (2010).

    Article  CAS  Google Scholar 

  27. Xie, P., Xiong, Q., Fang, Y., Qing, Q. & Lieber, C.M. Local electrical potential detection of DNA by nanowire–nanopore sensors. Nat. Nanotechnol. 7, 119–125 (2012).

    Article  CAS  Google Scholar 

  28. Sorgenfrei, S. et al. Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. Nat. Nanotechnol. 6, 126–132 (2011).

    Article  CAS  Google Scholar 

  29. Klepeis, J.L., Lindorff-Larsen, K., Dror, R.O. & Shaw, D.E. Long-timescale molecular dynamics simulations of protein structure and function. Curr. Opin. Struct. Biol. 19, 120–127 (2009).

    Article  CAS  Google Scholar 

  30. Gershow, M. & Golovchenko, J.a. Recapturing and trapping single molecules with a solid-state nanopore. Nat. Nanotechnol. 2, 775–779 (2007).

    Article  CAS  Google Scholar 

  31. Luan, B. et al. Base-by-base ratcheting of single stranded DNA through a solid-state nanopore. Phys. Rev. Lett. 104, 238103 (2010).

    Article  Google Scholar 

  32. Polk, B.J., Stelzenmuller, A., Mijares, G., MacCrehan, W. & Gaitan, M. Ag/AgCl microelectrodes with improved stability for microfluidics. Sensors Actuators Biol. Chem. 114, 239–247 (2006).

    Article  CAS  Google Scholar 

  33. Wanunu, M. & Meller, A. Chemically modified solid-state nanopores. Nano Lett. 7, 1580–1585 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Venta, M. Puster, K. Healy, V. Ray, C. Dean and L. Paninski for their assistance. K.L.S. acknowledges partial support from the Semiconductor Research Corporation through the Focus Center Research Program, the US National Institutes of Health (R33HG003089) and the Office of Naval Research (N00014-09-1-1117). M.D. acknowledges support from the National Institutes of Health (R21HG004767, American Recovery and Reinvestment Act Supplement to R21HG004767 and R21HG006313).

Author information

Authors and Affiliations

Authors

Contributions

J.K.R., K.L.S. and M.D. developed the platform concept. J.K.R. designed the amplifier and measurement system. J.K.R., K.L.S., M.W. and M.D. planned experiments. M.W. and C.A.M. fabricated nanopores. J.K.R. and M.W. performed nanopore experiments and analyzed data. J.K.R. and K.L.S. wrote the manuscript. All authors edited the manuscript.

Corresponding authors

Correspondence to Jacob K Rosenstein or Kenneth L Shepard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Discussion (PDF 1034 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenstein, J., Wanunu, M., Merchant, C. et al. Integrated nanopore sensing platform with sub-microsecond temporal resolution. Nat Methods 9, 487–492 (2012). https://doi.org/10.1038/nmeth.1932

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1932

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing