Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Functionally relevant neutrophilia in CD11c diphtheria toxin receptor transgenic mice

Abstract

Transgenic mice expressing the diphtheria toxin receptor (DTR) in specific cell types are key tools for functional studies in several biological systems. B6.FVB-Tg(Itgax-DTR/EGFP)57Lan/J (CD11c.DTR) and B6.Cg-Tg(Itgax-DTR/OVA/EGFP)1Gjh/Crl (CD11c.DOG) mice express the DTR in CD11c+ cells, allowing conditional depletion of dendritic cells. We report that dendritic-cell depletion in these models caused polymorphonuclear neutrophil (PMN) release from the bone marrow, which caused chemokine-dependent neutrophilia after 6–24 h and increased bacterial clearance in a mouse pyelonephritis model. We present a transgenic mouse line, B6.Cg-Tg(Itgax-EGFP-CRE-DTR-LUC)2Gjh/Crl (CD11c.LuciDTR), which is unaffected by early neutrophilia. However, CD11c.LuciDTR and CD11c.DTR mice showed late neutrophilia 72 h after dendritic cell depletion, which was independent of PMN release and possibly resulted from increased granulopoiesis. Thus, the time point of dendritic cell depletion and the choice of DTR transgenic mouse line must be considered in experimental settings where neutrophils may be involved.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Paradoxical effect of dendritic cell depletion on bacterial clearance.
Figure 2: Systemic neutrophilia in CD11c.DTR mice after dendritic cell depletion with 8 ng per gram body weight diphtheria toxin (DT).
Figure 3: CD11c.DOG mice showed early neutrophilia and improved bacterial clearance.
Figure 4: Generation of CD11c.LuciDTR mice.
Figure 5: CD11c.LuciDTR mice were not affected by early PMN release from the bone marrow.
Figure 6: Granulopoiesis in dendritic cell-depleted mice.

References

  1. Jung, S. et al. In vivo depletion of CD11c(+) dendritic cells abrogates priming of CD8(+) T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  CAS  Google Scholar 

  2. Bar-On, L. & Jung, S. Defining dendritic cells by conditional and constitutive cell ablation. Immunol. Rev. 234, 76–89 (2010).

    Article  CAS  Google Scholar 

  3. Plaks, V. et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. J. Clin. Invest. 118, 3954–3965 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Zammit, D.J., Cauley, L.S., Pham, Q.M. & Lefrancois, L. Dendritic cells maximize the memory CD8 T cell response to infection. Immunity 22, 561–570 (2005).

    Article  CAS  Google Scholar 

  5. Probst, H.C. & Van Den, B.M. Priming of CTLs by lymphocytic choriomeningitis virus depends on dendritic cells. J. Immunol. 174, 3920–3924 (2005).

    Article  CAS  Google Scholar 

  6. Osterholzer, J.J. et al. Role of dendritic cells and alveolar macrophages in regulating early host defense against pulmonary infection with Cryptococcus neoformans. Infect. Immun. 77, 3749–3758 (2009).

    Article  CAS  Google Scholar 

  7. Tittel, A.P. et al. Kidney dendritic cells induce innate immunity against bacterial pyelonephritis. J. Am. Soc. Nephrol. 22, 1435–1441 (2011).

    Article  CAS  Google Scholar 

  8. van Rijt, L.S. et al. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J. Exp. Med. 201, 981–991 (2005).

    Article  CAS  Google Scholar 

  9. Abe, K. et al. Conventional dendritic cells regulate the outcome of colonic inflammation independently of T cells. Proc. Natl. Acad. Sci. USA 104, 17022–17027 (2007).

    Article  CAS  Google Scholar 

  10. Scholz, J. et al. Renal dendritic cells stimulate IL-10 production and attenuate nephrotoxic nephritis. J. Am. Soc. Nephrol. 19, 527–537 (2008).

    Article  CAS  Google Scholar 

  11. Connolly, M.K. et al. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-alpha. J. Clin. Invest. 119, 3213–3225 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Heymann, F. et al. Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J. Clin. Invest. 119, 1286–1297 (2009).

    Article  CAS  Google Scholar 

  13. Bamboat, Z.M. et al. Conventional DCs reduce liver ischemia/reperfusion injury in mice via IL-10 secretion. J. Clin. Invest. 120, 559–569 (2010).

    Article  CAS  Google Scholar 

  14. Tadagavadi, R.K. & Reeves, W.B. Renal dendritic cells ameliorate nephrotoxic acute kidney injury. J. Am. Soc. Nephrol. 21, 53–63 (2010).

    Article  CAS  Google Scholar 

  15. Probst, H.C. et al. Histological analysis of CD11c-DTR/GFP mice after in vivo depletion of dendritic cells. Clin. Exp. Immunol. 141, 398–404 (2005).

    Article  CAS  Google Scholar 

  16. Hochweller, K., Striegler, J., Hammerling, G.J. & Garbi, N. A novel CD11c.DTR transgenic mouse for depletion of dendritic cells reveals their requirement for homeostatic proliferation of natural killer cells. Eur. J. Immunol. 38, 2776–2783 (2008).

    Article  CAS  Google Scholar 

  17. Hochweller, K. et al. Homeostasis of dendritic cells in lymphoid organs is controlled by regulation of their precursors via a feedback loop. Blood 114, 4411–4421 (2009).

    Article  CAS  Google Scholar 

  18. Autenrieth, S.E. et al. Immune evasion by Yersinia enterocolitica: differential targeting of dendritic cell subpopulations in vivo. PLoS Pathog. 6, e1001212 (2010).

    Article  Google Scholar 

  19. Mulvey, M.A. et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282, 1494–1497 (1998).

    Article  CAS  Google Scholar 

  20. Godaly, G., Proudfoot, A.E., Offord, R.E., Svanborg, C. & Agace, W.W. Role of epithelial interleukin-8 (IL-8) and neutrophil IL-8 receptor A in Escherichia coli–induced transuroepithelial neutrophil migration. Infect. Immun. 65, 3451–3456 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Murphy, P.M. Neutrophil receptors for interleukin-8 and related CXC chemokines. Semin. Hematol. 34, 311–318 (1997).

    CAS  PubMed  Google Scholar 

  22. Constien, R. et al. Characterization of a novel EGFP reporter mouse to monitor Cre recombination as demonstrated by a Tie2 Cre mouse line. Genesis 30, 36–44 (2001).

    Article  CAS  Google Scholar 

  23. Caton, M.L., Smith-Raska, M.R. & Reizis, B. Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J. Exp. Med. 204, 1653–1664 (2007).

    Article  CAS  Google Scholar 

  24. Birnberg, T. et al. Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome. Immunity 29, 986–997 (2008).

    Article  CAS  Google Scholar 

  25. Ueda, Y., Kondo, M. & Kelsoe, G. Inflammation and the reciprocal production of granulocytes and lymphocytes in bone marrow. J. Exp. Med. 201, 1771–1780 (2005).

    Article  CAS  Google Scholar 

  26. Brocker, T., Riedinger, M. & Karjalainen, K. Driving gene expression specifically in dendritic cells. Adv. Exp. Med. Biol. 417, 55–57 (1997).

    Article  CAS  Google Scholar 

  27. Bennett, C.L. et al. Inducible ablation of mouse Langerhans cells diminishes but fails to abrogate contact hypersensitivity. J. Cell Biol. 169, 569–576 (2005).

    Article  CAS  Google Scholar 

  28. Lahl, K. et al. Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J. Exp. Med. 204, 57–63 (2007).

    Article  CAS  Google Scholar 

  29. Wharram, B.L. et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J. Am. Soc. Nephrol. 16, 2941–2952 (2005).

    Article  CAS  Google Scholar 

  30. Durieux, P.F. et al. D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nat. Neurosci. 12, 393–395 (2009).

    Article  CAS  Google Scholar 

  31. Buch, T. et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat. Methods 2, 419–426 (2005).

    Article  CAS  Google Scholar 

  32. Lee, E.C. et al. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73, 56–65 (2001).

    Article  CAS  Google Scholar 

  33. Suffner, J. et al. Dendritic cells support homeostatic expansion of Foxp3+ regulatory T cells in Foxp3.LuciDTR mice. J. Immunol. 184, 1810–1820 (2010).

    Article  CAS  Google Scholar 

  34. Szymczak, A.L. et al. Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-based retroviral vector. Nat. Biotechnol. 22, 589–594 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Jung for constructive discussions and correcting the manuscript, B. Schumak (University of Bonn) for providing CD11c.DOG mice, G. Kublbeck and S. Schmidt for assistance in the generation of CD11c.LuciDTR mice. We acknowledge support by the Central Animal Facilities of the Medical Faculty Bonn and the Flow Cytometry Core Facility at the Institutes of Molecular Medicine and Experimental Immunology Bonn. This work was supported by the Deutsche Forschungsgemeinschaft (Ku1038/5 and SFBTR57TP10 to C.K.) and EU Project NoE-MUGEN (LSHG-CT-2005-005203 to G.H.).

Author information

Authors and Affiliations

Authors

Contributions

A.P.T., N.G. and C.K. conceived the study and wrote the manuscript. A.P.T. and C.H. performed most experiments. C.O., C.L., S.Y. and N.G. performed individual experiments. S.Y., G.J.H. and D.R.E. provided crucial ideas or essential reagents. A.P.T., C.H., C.O., C.L., S.Y., G.J.H., D.R.E., N.G. and C.K. discussed and interpreted results.

Corresponding authors

Correspondence to Natalio Garbi or Christian Kurts.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 570 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tittel, A., Heuser, C., Ohliger, C. et al. Functionally relevant neutrophilia in CD11c diphtheria toxin receptor transgenic mice. Nat Methods 9, 385–390 (2012). https://doi.org/10.1038/nmeth.1905

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1905

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing