Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Counting absolute numbers of molecules using unique molecular identifiers

Abstract

Counting individual RNA or DNA molecules is difficult because they are hard to copy quantitatively for detection. To overcome this limitation, we applied unique molecular identifiers (UMIs), which make each molecule in a population distinct, to genome-scale human karyotyping and mRNA sequencing in Drosophila melanogaster. Use of this method can improve accuracy of almost any next-generation sequencing method, including chromatin immunoprecipitation–sequencing, genome assembly, diagnostics and manufacturing-process control and monitoring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: UMIs can be generated by adding oligonucleotide labels, fragmenting, taking a small enough aliquot or a combination thereof.
Figure 2: Digital karyotyping by counting the absolute number of molecules.
Figure 3: Accuracy of mRNA-seq can be improved by the UMI method.

Similar content being viewed by others

References

  1. Ozsolak, F. et al. Nat. Methods 7, 619–621 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lipson, D. et al. Nat. Biotechnol. 27, 652–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Ozsolak, F. et al. Nature 461, 814–818 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Vogelstein, B. & Kinzler, K.W. Proc. Natl. Acad. Sci. USA 96, 9236–9241 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Macevicz, S.C. US patent application 11/125,043 (2005).

  6. Hug, H. & Schuler, R. J. Theor. Biol. 221, 615–624 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Konig, J. et al. Nat. Struct. Mol. Biol. 17, 909–915 (2010).

    Article  Google Scholar 

  8. Wang, Z. et al. PLoS Biol. 8, e1000530 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fu, G.K., Hu, J., Wang, P.H. & Fodor, S.P. Proc. Natl. Acad. Sci. USA 108, 9026–9031 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kinde, I., Wu, J., Papadopoulos, N., Kinzler, K.W. & Vogelstein, B. Proc. Natl. Acad. Sci. USA 108, 9530–9535 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Casbon, J.A., Osborne, R.J., Brenner, S. & Lichtenstein, C.P. Nucleic Acids Res. 39, e81 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chiu, R.W. et al. Proc. Natl. Acad. Sci. USA 105, 20458–20463 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fan, H.C., Blumenfeld, Y.J., Chitkara, U., Hudgins, L. & Quake, S.R. Proc. Natl. Acad. Sci. USA 105, 16266–16271 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anders, S. & Huber, W. Genome Biol. 11, R106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Benita, Y., Oosting, R.S., Lok, M.C., Wise, M.J. & Humphery-Smith, I. Nucleic Acids Res. 31, e99 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Linnarsson, S. Exp. Cell Res. 316, 1339–1343 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhu, Y.Y., Machleder, E.M., Chenchik, A., Li, R. & Siebert, P.D. Biotechniques 30, 892–897 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Cloonan, N. et al. Nat. Methods 5, 613–619 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Levin, J.Z. et al. Nat. Methods 7, 709–715 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stasinopoulos, D.M. & Rigby, R.A. J. Stat. Softw. 23, 1–46 (2007).

    Article  Google Scholar 

  22. Li, H. & Durbin, R. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Taipale, H. Secher Lindroos, E. Ukkonen and T. Whitington for critical review of the manuscript, and E. Iwarsson (Karolinska University Hospital) for the trisomy-21 DNA. This work was supported by European Research Council project Growth Control, Academy of Finland postdoctoral researcher's projects 122197 and 134073, and the Swedish Foundation for Strategic Research grant MDB09-0052.

Author information

Authors and Affiliations

Authors

Contributions

S.L., J.T., A.V., T.K. and M.E. conceived and designed experiments. A.V., K.K. and M.B. performed biological experiments. S.L., J.T., A.V. and T.K. analyzed data. J.T., A.V., T.K., M.E. and S.L. wrote the paper.

Corresponding authors

Correspondence to Sten Linnarsson or Jussi Taipale.

Ethics declarations

Competing interests

S.L. and J.T. have submitted a patent application on the absolute molecule counting method (UK patent application 1016608.0).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1, Supplementary Note (PDF 1812 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kivioja, T., Vähärautio, A., Karlsson, K. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods 9, 72–74 (2012). https://doi.org/10.1038/nmeth.1778

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1778

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing