Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Visualizing mechanical tension across membrane receptors with a fluorescent sensor

Abstract

We report a fluorescence-based turn-on sensor for mapping the mechanical strain exerted by specific cell-surface proteins in living cells. The sensor generates force maps with high spatial and temporal resolution using conventional fluorescence microscopy. We demonstrate the approach by mapping mechanical forces during the early stages of regulatory endocytosis of the ligand-activated epidermal growth factor receptor (EGFR).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and response of the EGFR tension sensor.
Figure 2: Characterization and quantification of the EGFR tension sensor.

Similar content being viewed by others

References

  1. Vogel, V. & Sheetz, M. Nat. Rev. Mol. Cell Biol. 7, 265–275 (2006).

    Article  CAS  Google Scholar 

  2. DuFort, C.C., Paszek, M.J. & Weaver, V.M. Nat. Rev. Mol. Cell Biol. 12, 308–319 (2011).

    Article  CAS  Google Scholar 

  3. Dufrene, Y.F. et al. Nat. Methods 8, 123–127 (2011).

    Article  CAS  Google Scholar 

  4. Muller, D.J., Helenius, J., Alsteens, D. & Dufrene, Y.F. Nat. Chem. Biol. 5, 383–390 (2009).

    Article  Google Scholar 

  5. Grashoff, C. et al. Nature 466, 263–266 (2010).

    Article  CAS  Google Scholar 

  6. Iwai, S. & Uyeda, T.Q.P. Proc. Natl. Acad. Sci. USA 105, 16882–16887 (2008).

    Article  CAS  Google Scholar 

  7. Meng, F. & Sachs, F. J. Cell Sci. 124, 261–269 (2011).

    Article  CAS  Google Scholar 

  8. Oesterhelt, F., Rief, M. & Gaub, H.E. New J. Phys. 1, 6.1–6.11 (1999).

    Article  Google Scholar 

  9. Kienberger, F. et al. Single Molecules 1, 123–128 (2000).

    Article  CAS  Google Scholar 

  10. Roberts, M.J., Bentley, M.D. & Harris, J.M. Adv. Drug Deliv. Rev. 54, 459–476 (2002).

    Article  CAS  Google Scholar 

  11. Harder, P., Grunze, M., Dahint, R., Whitesides, G.M. & Laibinis, P.E. J. Phys. Chem. B 102, 426–436 (1998).

    Article  CAS  Google Scholar 

  12. Goh, L.K., Huang, F., Kim, W., Gygi, S. & Sorkin, A. J. Cell Biol. 189, 871–883 (2010).

    Article  CAS  Google Scholar 

  13. Martin, A.C., Welch, M.D. & Drubin, D.G. Nat. Cell Biol. 8, 826–833 (2006).

    Article  CAS  Google Scholar 

  14. Salaita, K. et al. Science 327, 1380–1385 (2010).

    Article  CAS  Google Scholar 

  15. de Gennes, P.G. Macromolecules 13, 1069–1075 (1980).

    Article  CAS  Google Scholar 

  16. Bouchiat, C. et al. Biophys. J. 76, 409–413 (1999).

    Article  CAS  Google Scholar 

  17. Sulchek, T.A. et al. Proc. Natl. Acad. Sci. USA 102, 16638–16643 (2005).

    Article  CAS  Google Scholar 

  18. Saffarian, S., Cocucci, E. & Kirchhausen, T. PLoS Biol. 7, e1000191 (2009).

    Article  Google Scholar 

  19. Clack, N.G., Salaita, K. & Groves, J.T. Nat. Biotechnol. 26, 825–830 (2008).

    Article  CAS  Google Scholar 

  20. Nair, P.M., Salaita, K., Petit, R.S. & Groves, J.T. Nat. Protoc. 6, 523–539 (2011).

    Article  CAS  Google Scholar 

  21. Galush, W.J., Nye, J.A. & Groves, J.T. Biophys. J. 95, 2512–2519 (2008).

    Article  CAS  Google Scholar 

  22. Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, New York, 2006).

  23. Sage, D., Neumann, F.R., Hediger, F., Gasser, S.M. & Unser, M. IEEE Trans. Image Process. 14, 1372–1383 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Mattheyses (Emory University) for the CLC-eGFP plasmid and R. Nahta (Emory University Winship Cancer Institute) for the HCC1143 cells. We acknowledge the Emory University Winship Cancer Institute for support. K.S.S. acknowledges the Georgia Cancer Coalition Cancer Research Award for its support.

Author information

Authors and Affiliations

Authors

Contributions

D.R.S. adapted the FRET surface sensor for use with human cells expressing the EGFR and performed the majority of the human cell experiments. C.J. developed the force sensor and performed the quantitative characterization of the zero-force sensor conformation and its components. S.S.M. optimized and performed the CLC-eGFP transfections. K.S.S. devised the overall experimental strategy. D.R.S., C.J. and K.S.S. wrote and edited the manuscript.

Corresponding author

Correspondence to Khalid S Salaita.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 (PDF 10105 kb)

Supplementary Video 1

Animation showing the mechanism of sensor function. (AVI 3308 kb)

Supplementary Video 2

Movie showing cell activation of the force sensor. (AVI 513 kb)

Supplementary Video 3

Movie showing clathrin colocalization with force sensor activation. (AVI 4616 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stabley, D., Jurchenko, C., Marshall, S. et al. Visualizing mechanical tension across membrane receptors with a fluorescent sensor. Nat Methods 9, 64–67 (2012). https://doi.org/10.1038/nmeth.1747

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1747

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing