Abstract
In a multicenter study, we determined the expression profiles of 863 microRNAs by array analysis of 454 blood samples from human individuals with different cancers or noncancer diseases, and validated this 'miRNome' by quantitative real-time PCR. We detected consistently deregulated profiles for all tested diseases; pathway analysis confirmed disease association of the respective microRNAs. We observed significant correlations (P = 0.004) between the genomic location of disease-associated genetic variants and deregulated microRNAs.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A message passing framework with multiple data integration for miRNA-disease association prediction
Scientific Reports Open Access 28 September 2022
-
Fast and robust imputation for miRNA expression data using constrained least squares
BMC Bioinformatics Open Access 22 April 2022
-
Using biological information to analyze potential miRNA-mRNA regulatory networks in the plasma of patients with non-small cell lung cancer
BMC Cancer Open Access 21 March 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout


Accession codes
References
Taft, R.J., Pang, K.C., Mercer, T.R., Dinger, M. & Mattick, J.S. J. Pathol. 220, 126–139 (2010).
Mitchell, P.S. et al. Proc. Natl. Acad. Sci. USA 105, 10513–10518 (2008).
Otaegui, D. et al. PLoS ONE 4, e6309 (2009).
Vorwerk, S. et al. New Biotechnol. 25, 142–149 (2008).
Lu, M. et al. PLoS ONE 3, e3420 (2008).
Backes, C. et al. Nucleic Acids Res. 35, W186–W192 (2007).
Backes, C., Meese, E., Lenhof, H.P. & Keller, A. Nucleic Acids Res. 38, 4476–4486 (2010).
Keller, A. et al. BMC Cancer 9, 353 (2009).
Leidinger, P. et al. BMC Cancer 10, 262 (2010).
Meder, B. et al. Basic Res. Cardiol. 106, 13–23 (2011).
Roth, P. et al. J. Neurochem. 18, 449–457 (2011).
Petriv, O.I., Hansen, C.L., Humphries, R.K. & Kuchenbauer, F. Cell Cycle 10, 2–3 (2011).
Garzon, R. et al. Blood 111, 3183–3189 (2008).
Griffiths-Jones, S. Methods Mol. Biol. 342, 129–138 (2006).
Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. Bioinformatics 19, 185–193 (2003).
Edgar, R., Domrachev, M. & Lash, A.E. Nucleic Acids Res. 30, 207–210 (2002).
Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N. & Golani, I. Behav. Brain Res. 125, 279–284 (2001).
Vapnik, V. The Nature of Statistical Learning Theory. 2nd edn. (Springer, New York, 2000).
Team, R. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2008).
Kanehisa, M. & Goto, S. Nucleic Acids Res 28, 27–30 (2000).
Acknowledgements
We thank F. Flachsbart, B. Noack and B. Loos for support. This work was financially supported by the German Ministry of Research Education (Bundesministerium für Bildung und Forschung 01EX0806), Hedwig Stalter Foundation, Homburger Forschungsförderungsprogramm and by the Deutsche Forschungsgemeinschaft (LE2783/1-1). Infrastructure support was received from the Deutsche Forschungsgemeinschaft cluster of excellence 'Inflammation at Interfaces'.
Author information
Authors and Affiliations
Contributions
A.K. initiated the study; E.M., P.R., J.M-Q., A.B., P.S., V.B., C.S., M.B., M.W.B., J.W., S.F.M.H., J.D., S.S., H.A.K., W.R., B.M., J.D.H. and A.F. designed the study; A.K., P.L., A.E., H.A.K., W.R., B.M., J.D.H., A.F., E.M., S.S. and B.V. wrote the manuscript; A.K., J.H., C.B., A.W., I.A., B.V. and H-P.L. analyzed data; P.L., A.B., C.T., A.E., N.G., K.O., J.W., T.H., G.J., H.D., A.S., B.W., B.K., N.G., A.N., V.B., B.V., S.H. and B.M. performed experiments; C.T., K.O., T.H., K.R., H.H., J.H., G.J., H.D., A.S., B.W., B.K., J.R., S.U.J., N.G., M.S., M.W.B., J.W. and S.F.M.H. collected samples.
Corresponding author
Ethics declarations
Competing interests
A.K., C.B., A.W., I.A., P.S., V.B., C.S., M.B., MS have been affiliated with febit, a biotech company specializing in microarray screening.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–6, Supplementary Tables 1–8 (PDF 5051 kb)
Rights and permissions
About this article
Cite this article
Keller, A., Leidinger, P., Bauer, A. et al. Toward the blood-borne miRNome of human diseases. Nat Methods 8, 841–843 (2011). https://doi.org/10.1038/nmeth.1682
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmeth.1682
This article is cited by
-
Investigation of Relationship Between Small Noncoding RNA (sncRNA) Expression Levels and Serum Iron, Copper, and Zinc Levels in Clinical Diagnosed Multiple Sclerosis Patients
Molecular Neurobiology (2023)
-
MicroRNAs expression in peripheral blood mononuclear cells of patients with multiple sclerosis propose
Molecular Biology Reports (2023)
-
Using biological information to analyze potential miRNA-mRNA regulatory networks in the plasma of patients with non-small cell lung cancer
BMC Cancer (2022)
-
Fast and robust imputation for miRNA expression data using constrained least squares
BMC Bioinformatics (2022)
-
A message passing framework with multiple data integration for miRNA-disease association prediction
Scientific Reports (2022)