Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantitative proteomics by amino acid labeling in C. elegans

Abstract

We demonstrate labeling of Caenorhabditis elegans with heavy isotope–labeled lysine by feeding them with heavy isotope–labeled Escherichia coli. Using heavy isotope–labeled worms and quantitative proteomics methods, we identified several proteins that are regulated in response to loss or RNAi-mediated knockdown of the nuclear hormone receptor 49 in C. elegans. The combined use of quantitative proteomics and selective gene knockdown is a powerful tool for C. elegans biology.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Labeling of C. elegans with heavy isotope–labeled lysine.
Figure 2: Quantification of protein changes upon loss or knockdown of nhr-49.

References

  1. Markaki, M. & Tavernarakis, N. Biotechnol. J. 5, 1261–1276 (2010).

    CAS  Article  PubMed  Google Scholar 

  2. Leitner, A. & Lindner, W. Methods Mol. Biol. 527, 229–243 (2009).

    CAS  Article  PubMed  Google Scholar 

  3. Ong, S.E. et al. Mol. Cell. Proteomics 1, 376–386 (2002).

    CAS  Article  PubMed  Google Scholar 

  4. Sury, M.D., Chen, J.X. & Selbach, M. Mol. Cell. Proteomics 9, 2173–2183 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Krijgsveld, J. et al. Nat. Biotechnol. 21, 927–931 (2003).

    CAS  Article  PubMed  Google Scholar 

  6. Gruhler, A. et al. Mol. Cell. Proteomics 4, 310–327 (2005).

    CAS  Article  PubMed  Google Scholar 

  7. Jiang, H. & English, A.M. J. Proteome Res. 1, 345–350 (2002).

    CAS  Article  PubMed  Google Scholar 

  8. Gruhler, A., Schulze, W.X., Matthiesen, R., Mann, M. & Jensen, O.N. Mol. Cell. Proteomics 4, 1697–1709 (2005).

    CAS  Article  PubMed  Google Scholar 

  9. Kruger, M. et al. Cell 134, 353–364 (2008).

    Article  PubMed  Google Scholar 

  10. Dong, M.Q. et al. Science 317, 660–663 (2007).

    CAS  Article  PubMed  Google Scholar 

  11. Schrimpf, S.P. & Hengartner, M.O. J. Proteomics 73, 2186–2197 (2010).

    CAS  Article  PubMed  Google Scholar 

  12. Ong, S.E. & Mann, M. Nat. Protoc. 1, 2650–2660 (2006).

    CAS  Article  PubMed  Google Scholar 

  13. Kamath, R.S. et al. Nature 421, 231–237 (2003).

    CAS  PubMed  Google Scholar 

  14. Van Gilst, M.R., Hadjivassiliou, H. & Yamamoto, K.R. Proc. Natl. Acad. Sci. USA 102, 13496–13501 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Van Gilst, M.R., Hadjivassiliou, H., Jolly, A. & Yamamoto, K.R. PLoS Biol. 3, e53 (2005).

    Article  PubMed  Google Scholar 

  16. Brenner, S. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Neidhardt, F.C., Bloch, P.L. & Smith, D.F. J. Bacteriol. 119, 736–747 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Timmons, L., Court, D.L. & Fire, A. Gene 263, 103–112 (2001).

    CAS  Article  PubMed  Google Scholar 

  19. Babitzke, P., Granger, L., Olszewski, J. & Kushner, S.R. J. Bacteriol. 175, 229–239 (1993).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Wessel, D. & Flugge, U.I. Anal. Biochem. 138, 141–143 (1984).

    CAS  Article  PubMed  Google Scholar 

  21. Gobom, J., Nordhoff, E., Mirgorodskaya, E., Ekman, R. & Roepstorff, P. J. Mass Spectrom. 34, 105–116 (1999).

    CAS  Article  PubMed  Google Scholar 

  22. Liu, D.L., Beegle, L.W. & Kanik, I. Astrobiology 8, 229–241 (2008).

    CAS  Article  PubMed  Google Scholar 

  23. Cox, J. & Mann, M. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K.E. Budtz and L. Jakobsen for technical assistance, S.R. Kushner (University of Georgia, Athens) for bacterial strains, and The Danish Research Council and the Novo Nordisk A/S Foundation for financial support.

Author information

Authors and Affiliations

Authors

Contributions

J.F., K.E.-K., A.G., P.H., M.R.L., J.M.-J. and N.J.F. designed research; J.F., K.E.-K., A.G., D.P., P.H., J.M.-J. and N.J.F. performed research and analyzed data; J.F. and N.F. wrote the manuscript, which K.E.K., P.H., M.R.L. and J.M.J. improved. N.F., J.M.J., M.R.L. and P.H. provided funding.

Corresponding author

Correspondence to Nils J Færgeman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Table 2 (PDF 5106 kb)

Supplementary Table 1

Protein list of all identified, quantified and regulated proteins in strain N2 and in nhr-49(nr2041) worms and in N2 nhr-49 RNAi worms. (XLSX 2303 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fredens, J., Engholm-Keller, K., Giessing, A. et al. Quantitative proteomics by amino acid labeling in C. elegans. Nat Methods 8, 845–847 (2011). https://doi.org/10.1038/nmeth.1675

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1675

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing