Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Three-dimensional biomaterials for the study of human pluripotent stem cells

Abstract

The self-renewal and differentiation of human pluripotent stem cells (hPSCs) have typically been studied in flat, two-dimensional (2D) environments. In this Perspective, we argue that 3D model systems may be needed in addition, as they mimic the natural 3D tissue organization more closely. We survey methods that have used 3D biomaterials for expansion of undifferentiated hPSCs, directed differentiation of hPSCs and transplantation of differentiated hPSCs in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Three-dimensional matrices for directed hPSC differentiation.

Similar content being viewed by others

References

  1. Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  Google Scholar 

  2. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  Google Scholar 

  3. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  Google Scholar 

  4. Griffith, L.G. & Swartz, M.A. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7, 211–224 (2006).

    Article  CAS  Google Scholar 

  5. Zagris, N. Extracellular matrix in development of the early embryo. Micron 32, 427–438 (2001).

    Article  CAS  Google Scholar 

  6. Hynes, R.O. The extracellular matrix: not just pretty fibrils. Science 326, 1216–1219 (2009).

    Article  CAS  Google Scholar 

  7. Adamo, L. et al. Biomechanical forces promote embryonic haematopoiesis. Nature 459, 1131–1135 (2009).

    Article  CAS  Google Scholar 

  8. Levenberg, S. et al. Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc. Natl. Acad. Sci. USA 100, 12741–12746 (2003).

    Article  CAS  Google Scholar 

  9. Wozniak, M.A. & Chen, C.S. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10, 34–43 (2009).

    Article  CAS  Google Scholar 

  10. Discher, D.E., Mooney, D.J. & Zandstra, P.W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).

    Article  CAS  Google Scholar 

  11. Lutolf, M.P., Gilbert, P.M. & Blau, H.M. Designing materials to direct stem-cell fate. Nature 462, 433–441 (2009).

    Article  CAS  Google Scholar 

  12. Laflamme, M.A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 1015–1024 (2007).

    Article  CAS  Google Scholar 

  13. Baharvand, H., Hashemi, S.M., Kazemi Ashtiani, S. & Farrokhi, A. Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. Int. J. Dev. Biol. 50, 645–652 (2006).

    Article  CAS  Google Scholar 

  14. Li, Z., Leung, M., Hopper, R., Ellenbogen, R. & Zhang, M. Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials 31, 404–412 (2010).

    Article  CAS  Google Scholar 

  15. Gerecht, S. et al. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc. Natl. Acad. Sci. USA 104, 11298–11303 (2007).

    Article  CAS  Google Scholar 

  16. Ferreira, L.S. et al. Bioactive hydrogel scaffolds for controllable vascular differentiation of human embryonic stem cells. Biomaterials 28, 2706–2717 (2007).

    Article  CAS  Google Scholar 

  17. Gerecht-Nir, S., Cohen, S., Ziskind, A. & Itskovitz-Eldor, J. Three-dimensional porous alginate scaffolds provide a conducive environment for generation of well-vascularized embryoid bodies from human embryonic stem cells. Biotechnol. Bioeng. 88, 313–320 (2004).

    Article  CAS  Google Scholar 

  18. Ueno, M. et al. Neural conversion of ES cells by an inductive activity on human amniotic membrane matrix. Proc. Natl. Acad. Sci. USA 103, 9554–9559 (2006).

    Article  CAS  Google Scholar 

  19. Khademhosseini, A., Langer, R., Borenstein, J. & Vacanti, J.P. Microscale technologies for tissue engineering and biology. Proc. Natl. Acad. Sci. USA 103, 2480–2487 (2006).

    Article  CAS  Google Scholar 

  20. Kloxin, A.M., Kasko, A.M., Salinas, C.N. & Anseth, K.S. Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324, 59–63 (2009).

    Article  CAS  Google Scholar 

  21. Kraehenbuehl, T.P. et al. Three-dimensional extracellular matrix-directed cardioprogenitor differentiation: systematic modulation of a synthetic cell-responsive PEG-hydrogel. Biomaterials 29, 2757–2766 (2008).

    Article  CAS  Google Scholar 

  22. Hwang, N.S., Varghese, S. & Elisseeff, J. Derivation of chondrogenically-committed cells from human embryonic cells for cartilage tissue regeneration. PLoS ONE 3, e2498 (2008).

    Article  Google Scholar 

  23. Lee, S.T. et al. Engineering integrin signaling for promoting embryonic stem cell self-renewal in a precisely defined niche. Biomaterials 31, 1219–1226 (2010).

    Article  CAS  Google Scholar 

  24. Kraehenbuehl, T.P. et al. Human embryonic stem cell-derived microvascular grafts for cardiac tissue preservation after myocardial infarction. Biomaterials 32, 1102–1109 (2011).

    Article  CAS  Google Scholar 

  25. Levenberg, S. et al. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 23, 879–884 (2005).

    Article  CAS  Google Scholar 

  26. Gerecht, S. et al. A porous photocurable elastomer for cell encapsulation and culture. Biomaterials 28, 4826–4835 (2007).

    Article  CAS  Google Scholar 

  27. Hwang, N.S. et al. In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc. Natl. Acad. Sci. USA 105, 20641–20646 (2008).

    Article  CAS  Google Scholar 

  28. Kraehenbuehl, T.P., Ferreira, L.S., Zammaretti, P., Hubbell, J.A. & Langer, R. Cell-responsive hydrogel for encapsulation of vascular cells. Bioma 30, 4318–4324 (2009).

    Article  CAS  Google Scholar 

  29. Stephan, M.T., Moon, J.J., Um, S.H., Bershteyn, A. & Irvine, D.J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16, 1035–1041 (2010).

    Article  CAS  Google Scholar 

  30. Leor, J. et al. Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart 93, 1278–1284 (2007).

    Article  Google Scholar 

  31. Ludwig, T.E. et al. Derivation of human embryonic stem cells in defined conditions. Nat. Biotechnol. 24, 185–187 (2006).

    Article  CAS  Google Scholar 

  32. Melkoumian, Z. et al. Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat. Biotechnol. 28, 606–610 (2010).

    Article  CAS  Google Scholar 

  33. Villa-Diaz, L.G. et al. Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat. Biotechnol. 28, 581–583 (2010).

    Article  CAS  Google Scholar 

  34. Klim, J.R., Li, L., Wrighton, P.J., Piekarczyk, M.S. & Kiessling, L.L. A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat. Methods 7, 989–994 (2010).

    Article  CAS  Google Scholar 

  35. Mei, Y. et al. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat. Mater. 9, 768–778 (2010).

    Article  CAS  Google Scholar 

  36. Li, D. et al. Integrated biochemical and mechanical signals regulate multifaceted human embryonic stem cell functions. J. Cell Biol. 191, 631–644 (2010).

    Article  CAS  Google Scholar 

  37. Li, L. et al. A unique interplay between Rap1 and E-cadherin in the endocytic pathway regulates self-renewal of human embryonic stem cells. Stem Cells 28, 247–257 (2010).

    Article  Google Scholar 

  38. Chowdhury, F. et al. Soft substrates promote homogeneous self-renewal of embryonic stem cells via downregulating cell-matrix tractions. PLoS ONE 5, e15655 (2010).

    Article  CAS  Google Scholar 

  39. Chen, G., Hou, Z., Gulbranson, D.R. & Thomson, J.A. Actin-myosin contractility is responsible for the reduced viability of dissociated human embryonic stem cells. Cell Stem Cell 7, 240–248 (2010).

    Article  CAS  Google Scholar 

  40. Braam, S.R. et al. Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells 26, 2257–2265 (2008).

    Article  CAS  Google Scholar 

  41. Meng, Y. et al. Characterization of integrin engagement during defined human embryonic stem cell culture. FASEB J. 24, 1056–1065 (2010).

    Article  CAS  Google Scholar 

  42. Xu, C. et al. Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19, 971–974 (2001).

    Article  CAS  Google Scholar 

  43. Hoffman, L.M. & Carpenter, M.K. Characterization and culture of human embryonic stem cells. Nat. Biotechnol. 23, 699–708 (2005).

    Article  CAS  Google Scholar 

  44. Tibbitt, M.W. & Anseth, K.S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655–663 (2009).

    Article  CAS  Google Scholar 

  45. Gieni, R.S. & Hendzel, M.J. Mechanotransduction from the ECM to the genome: are the pieces now in place? J. Cell Biochem. 104, 1964–1987 (2008).

    Article  CAS  Google Scholar 

  46. D'Amour, K.A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 24, 1392–1401 (2006).

    Article  CAS  Google Scholar 

  47. Chambers, S.M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    Article  CAS  Google Scholar 

  48. Levenberg, S., Burdick, J.A., Kraehenbuehl, T. & Langer, R. Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds. Tissue Eng. 11, 506–512 (2005).

    Article  CAS  Google Scholar 

  49. Evans, N.D. et al. Substrate stiffness affects early differentiation events in embryonic stem cells. Eur. Cell Mater. 18, 1–14 (2009).

    Article  CAS  Google Scholar 

  50. Legant, W.R. et al. Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat. Methods 7, 969–971 (2010).

    Article  CAS  Google Scholar 

  51. Ferreira, L. et al. Human embryoid bodies containing nano- and microparticulate delivery vehicles. Adv. Mater. 20, 2285–2291 (2008).

    Article  CAS  Google Scholar 

  52. Guenou, H. et al. Human embryonic stem-cell derivatives for full reconstruction of the pluristratified epidermis: a preclinical study. Lancet 374, 1745–1753 (2009).

    Article  CAS  Google Scholar 

  53. Sachlos, E. & Auguste, D.T. Embryoid body morphology influences diffusive transport of inductive biochemicals: a strategy for stem cell differentiation. Biomaterials 29, 4471–4480 (2008).

    Article  CAS  Google Scholar 

  54. Spence, J.R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011).

    Article  Google Scholar 

  55. Toh, W.S. et al. Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials 31, 6968–6980 (2010).

    Article  CAS  Google Scholar 

  56. van Laake, L.W. et al. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res. 1, 9–24 (2007).

    Article  Google Scholar 

  57. James, D. et al. Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFβ inhibition is Id1 dependent. Nat. Biotechnol. 28, 161–166 (2010).

    Article  CAS  Google Scholar 

  58. Caspi, O. et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ. Res. 100, 263–272 (2007).

    Article  CAS  Google Scholar 

  59. Lutolf, M.P. & Hubbell, J.A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47–55 (2005).

    Article  CAS  Google Scholar 

  60. Anderson, D.G., Levenberg, S. & Langer, R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nat. Biotechnol. 22, 863–866 (2004).

    Article  CAS  Google Scholar 

  61. Yang, F. et al. Combinatorial extracellular matrices for human embryonic stem cell differentiation in 3D. Biomacromolecules 11, 1909–1914 (2010).

    Article  CAS  Google Scholar 

  62. Ferreira, L., Karp, J.M., Nobre, L. & Langer, R. New opportunities: the use of nanotechnologies to manipulate and track stem cells. Cell Stem Cell 3, 136–146 (2008).

    Article  CAS  Google Scholar 

  63. Ferreira, L.S. et al. Vascular progenitor cells isolated from human embryonic stem cells give rise to endothelial and smooth muscle like cells and form vascular networks in vivo. Circ. Res. 101, 286–294 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by US National Institutes of Health (grant HL060435). T.P.K. was supported by the Swiss National Science Foundation (grant PBELP3-127902), a Rotary Ambassadorial Scholarship and a Medicus Exchange Scholarship. L.S.F. was supported by a Marie Curie–Reintegration grant (FP7-People-2007-4-3-IRG; contract 230929), Massachusetts Institute of Technology–Portugal program and the Portuguese Foundation for Science and Technology (PTDC/SAU-BEB/098468/2008; PTDC/CTM/099659/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Langer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraehenbuehl, T., Langer, R. & Ferreira, L. Three-dimensional biomaterials for the study of human pluripotent stem cells. Nat Methods 8, 731–736 (2011). https://doi.org/10.1038/nmeth.1671

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1671

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research