MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes

Article metrics

Abstract

We demonstrate the versatility of a collection of insertions of the transposon Minos-mediated integration cassette (MiMIC), in Drosophila melanogaster. MiMIC contains a gene-trap cassette and the yellow+ marker flanked by two inverted bacteriophage ΦC31 integrase attP sites. MiMIC integrates almost at random in the genome to create sites for DNA manipulation. The attP sites allow the replacement of the intervening sequence of the transposon with any other sequence through recombinase-mediated cassette exchange (RMCE). We can revert insertions that function as gene traps and cause mutant phenotypes to revert to wild type by RMCE and modify insertions to control GAL4 or QF overexpression systems or perform lineage analysis using the Flp recombinase system. Insertions in coding introns can be exchanged with protein-tag cassettes to create fusion proteins to follow protein expression and perform biochemical experiments. The applications of MiMIC vastly extend the D. melanogaster toolkit.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The MiMIC transposon system.
Figure 2: Binary expression and lineage analysis with MiMIC insertions.
Figure 3: Protein trapping with MiMIC insertions.
Figure 4: Expression analyses of tagged proteins.

References

  1. 1

    Ryder, E. & Russell, S. Transposable elements as tools for genomics and genetics in Drosophila. Brief. Funct. Genomics Proteomics 2, 57–71 (2003).

  2. 2

    Venken, K.J. & Bellen, H.J. Emerging technologies for gene manipulation in Drosophila melanogaster. Nat. Rev. Genet. 6, 167–178 (2005).

  3. 3

    Venken, K.J. & Bellen, H.J. Transgenesis upgrades for Drosophila melanogaster. Development 134, 3571–3584 (2007).

  4. 4

    Bellen, H.J. et al. The BDGP gene disruption project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167, 761–781 (2004).

  5. 5

    Bellen, H.J. et al. The Drosophila gene disruption project: progress using transposons with distinctive site specificities. Genetics 188, 731–743 (2011).

  6. 6

    Witsell, A., Kane, D.P., Rubin, S. & McVey, M. Removal of the bloom syndrome DNA helicase extends the utility of imprecise transposon excision for making null mutations in Drosophila. Genetics 183, 1187–1193 (2009).

  7. 7

    Franz, G. & Savakis, C. Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons. Nucleic Acids Res. 19, 6646 (1991).

  8. 8

    Metaxakis, A., Oehler, S., Klinakis, A. & Savakis, C. Minos as a genetic and genomic tool in Drosophila melanogaster. Genetics 171, 571–581 (2005).

  9. 9

    Pavlopoulos, A., Oehler, S., Kapetanaki, M.G. & Savakis, C. The DNA transposon Minos as a tool for transgenesis and functional genomic analysis in vertebrates and invertebrates. Genome Biol. 8 (suppl. 1), S2 (2007).

  10. 10

    Spradling, A.C. et al. The Berkeley Drosophila Genome Project gene disruption project: single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153, 135–177 (1999).

  11. 11

    Rorth, P. et al. Systematic gain-of-function genetics in Drosophila. Development 125, 1049–1057 (1998).

  12. 12

    Bier, E. et al. Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev. 3, 1273–1287 (1989).

  13. 13

    Bellen, H.J. et al. P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev. 3, 1288–1300 (1989).

  14. 14

    Lukacsovich, T. et al. Dual-tagging gene trap of novel genes in Drosophila melanogaster. Genetics 157, 727–742 (2001).

  15. 15

    Morin, X., Daneman, R., Zavortink, M. & Chia, W. A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc. Natl. Acad. Sci. USA 98, 15050–15055 (2001).

  16. 16

    Clyne, P.J., Brotman, J.S., Sweeney, S.T. & Davis, G. Green fluorescent protein tagging Drosophila proteins at their native genomic loci with small P elements. Genetics 165, 1433–1441 (2003).

  17. 17

    Aleksic, J., Lazic, R., Muller, I., Russell, S.R. & Adryan, B. Biases in Drosophila melanogaster protein trap screens. BMC Genomics 10, 249 (2009).

  18. 18

    Quinones-Coello, A.T. et al. Exploring strategies for protein trapping in Drosophila. Genetics 175, 1089–1104 (2007).

  19. 19

    Buszczak, M. et al. The carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 175, 1505–1531 (2007).

  20. 20

    Branda, C.S. & Dymecki, S.M. Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004).

  21. 21

    Wirth, D. et al. Road to precision: recombinase-based targeting technologies for genome engineering. Curr. Opin. Biotechnol. 18, 411–419 (2007).

  22. 22

    Golic, K.G. & Lindquist, S. The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509 (1989).

  23. 23

    Groth, A.C., Fish, M., Nusse, R. & Calos, M.P. Construction of transgenic Drosophila by using the site-specific integrase from phage φC31. Genetics 166, 1775–1782 (2004).

  24. 24

    Bischof, J., Maeda, R.K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases. Proc. Natl. Acad. Sci. USA 104, 3312–3317 (2007).

  25. 25

    Schlake, T. & Bode, J. Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33, 12746–12751 (1994).

  26. 26

    Baer, A. & Bode, J. Coping with kinetic and thermodynamic barriers: RMCE, an efficient strategy for the targeted integration of transgenes. Curr. Opin. Biotechnol. 12, 473–480 (2001).

  27. 27

    Horn, C. & Handler, A.M. Site-specific genomic targeting in Drosophila. Proc. Natl. Acad. Sci. USA 102, 12483–12488 (2005).

  28. 28

    Bateman, J.R., Lee, A.M. & Wu, C.T. Site-specific transformation of Drosophila via φC31 integrase-nediated cassette exchange. Genetics 173, 769–777 (2006).

  29. 29

    Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

  30. 30

    Potter, C.J., Tasic, B., Russler, E.V., Liang, L. & Luo, L. The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141, 536–548 (2010).

  31. 31

    Collins, C.A., Wairkar, Y.P., Johnson, S.L. & Diantonio, A. Highwire restrains synaptic growth by attenuating a MAP kinase signal. Neuron 51, 57–69 (2006).

  32. 32

    Dubruille, R. et al. Drosophila regulatory factor X is necessary for ciliated sensory neuron differentiation. Development 129, 5487–5498 (2002).

  33. 33

    Shishido, E., Takeichi, M. & Nose, A. Drosophila synapse formation: regulation by transmembrane protein with Leu-rich repeats, CAPRICIOUS. Science 280, 2118–2121 (1998).

  34. 34

    Martinek, N., Zou, R., Berg, M., Sodek, J. & Ringuette, M. Evolutionary conservation and association of SPARC with the basal lamina in Drosophila. Dev. Genes Evol. 212, 124–133 (2002).

  35. 35

    Martinek, N., Shahab, J., Saathoff, M. & Ringuette, M. Haemocyte-derived SPARC is required for collagen-IV-dependent stability of basal laminae in Drosophila embryos. J. Cell Sci. 121, 1671–1680 (2008).

  36. 36

    Ehrhardt, A., Engler, J.A., Xu, H., Cherry, A.M. & Kay, M.A. Molecular analysis of chromosomal rearrangements in mammalian cells after φC31-mediated integration. Hum. Gene Ther. 17, 1077–1094 (2006).

  37. 37

    Liu, J., Jeppesen, I., Nielsen, K. & Jensen, T.G. Phic31 integrase induces chromosomal aberrations in primary human fibroblasts. Gene Ther. 13, 1188–1190 (2006).

  38. 38

    Liu, J., Skjorringe, T., Gjetting, T. & Jensen, T.G. PhiC31 integrase induces a DNA damage response and chromosomal rearrangements in human adult fibroblasts. BMC Biotechnol. 9, 31 (2009).

  39. 39

    Iwai, Y. et al. Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron 19, 77–89 (1997).

  40. 40

    Vandaele, C., Coulon-Bublex, M., Couble, P. & Durand, B. Drosophila regulatory factor X is an embryonic type I sensory neuron marker also expressed in spermatids and in the brain of Drosophila. Mech. Dev. 103, 159–162 (2001).

  41. 41

    Bodily, K.D., Morrison, C.M., Renden, R.B. & Broadie, K. A novel member of the Ig superfamily, turtle, is a CNS-specific protein required for coordinated motor control. J. Neurosci. 21, 3113–3125 (2001).

  42. 42

    Brown, N.H. et al. Talin is essential for integrin function in Drosophila. Dev. Cell 3, 569–579 (2002).

  43. 43

    Yao, C.K. et al. A synaptic vesicle-associated Ca2+ channel promotes endocytosis and couples exocytosis to endocytosis. Cell 138, 947–960 (2009).

  44. 44

    Negre, N. et al. A cis-regulatory map of the Drosophila genome. Nature 471, 527–531 (2011).

  45. 45

    Gohl, D.M. et al. A versatile in vivo system for directed dissection of gene expression patterns. Nat. Methods 8, 231–237 (2011).

  46. 46

    Wesolowska, N. & Rong, Y.S. The past, present and future of gene targeting in Drosophila. Fly (Austin) 4, 53–59 (2010).

  47. 47

    Venken, K.J., He, Y., Hoskins, R.A. & Bellen, H.J. P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314, 1747–1751 (2006).

  48. 48

    Venken, K.J. et al. Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nat. Methods 6, 431–434 (2009).

  49. 49

    Klinakis, A.G., Loukeris, T.G., Pavlopoulos, A. & Savakis, C. Mobility assays confirm the broad host-range activity of the Minos transposable element and validate new transformation tools. Insect Mol. Biol. 9, 269–275 (2000).

  50. 50

    Groth, A.C., Olivares, E.C., Thyagarajan, B. & Calos, M.P. A phage integrase directs efficient site-specific integration in human cells. Proc. Natl. Acad. Sci. USA 97, 5995–6000 (2000).

  51. 51

    Hodges, D. & Bernstein, S.I. Suboptimal 5′ and 3′ splice sites regulate alternative splicing of Drosophila melanogaster myosin heavy chain transcripts in vitro. Mech. Dev. 37, 127–140 (1992).

  52. 52

    Okada, A., Lansford, R., Weimann, J.M., Fraser, S.E. & McConnell, S.K. Imaging cells in the developing nervous system with retrovirus expressing modified green fluorescent protein. Exp. Neurol. 156, 394–406 (1999).

  53. 53

    Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K. & Pease, L.R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68 (1989).

  54. 54

    Pavlopoulos, A., Berghammer, A.J., Averof, M. & Klingler, M. Efficient transformation of the beetle Tribolium castaneum using the Minos transposable element: quantitative and qualitative analysis of genomic integration events. Genetics 167, 737–746 (2004).

  55. 55

    Apitz, H. et al. Identification of regulatory modules mediating specific expression of the roughest gene in Drosophila melanogaster. Dev. Genes Evol. 214, 453–459 (2004).

  56. 56

    Raymond, C.S. & Soriano, P. High-efficiency FLP and φC31 site-specific recombination in mammalian cells. PLoS ONE 2, e162 (2007).

  57. 57

    Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

  58. 58

    Pedelacq, J.D., Cabantous, S., Tran, T., Terwilliger, T.C. & Waldo, G.S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

  59. 59

    Ai, H.W., Shaner, N.C., Cheng, Z., Tsien, R.Y. & Campbell, R.E. Exploration of new chromophore structures leads to the identification of improved blue fluorescent proteins. Biochemistry 46, 5904–5910 (2007).

  60. 60

    Shaner, N.C. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Methods 5, 545–551 (2008).

  61. 61

    Smith, A.T. et al. Expression of a synthetic gene for horseradish peroxidase C in Escherichia coli and folding and activation of the recombinant enzyme with Ca2+ and heme. J. Biol. Chem. 265, 13335–13343 (1990).

  62. 62

    Gurskaya, N.G. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24, 461–465 (2006).

  63. 63

    Chudakov, D.M., Lukyanov, S. & Lukyanov, K.A. Using photoactivatable fluorescent protein Dendra2 to track protein movement. Biotechniques 42, 553–557 (2007).

  64. 64

    Bulina, M.E. et al. A genetically encoded photosensitizer. Nat. Biotechnol. 24, 95–99 (2006).

  65. 65

    Martin, B.R., Giepmans, B.N., Adams, S.R. & Tsien, R.Y. Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat. Biotechnol. 23, 1308–1314 (2005).

  66. 66

    Schmidt, T.G., Koepke, J., Frank, R. & Skerra, A. Molecular interaction between the Strep-tag affinity peptide and its cognate target, streptavidin. J. Mol. Biol. 255, 753–766 (1996).

  67. 67

    Terpe, K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 60, 523–533 (2003).

  68. 68

    Evan, G.I., Lewis, G.K., Ramsay, G. & Bishop, J.M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5, 3610–3616 (1985).

  69. 69

    Wilson, I.A. et al. The structure of an antigenic determinant in a protein. Cell 37, 767–778 (1984).

  70. 70

    Dougherty, W.G., Cary, S.M. & Parks, T.D. Molecular genetic analysis of a plant virus polyprotein cleavage site: a model. Virology 171, 356–364 (1989).

  71. 71

    Hackbarth, J.S. et al. S-peptide epitope tagging for protein purification, expression monitoring, and localization in mammalian cells. Biotechniques 37, 835–839 (2004).

  72. 72

    Southern, J.A., Young, D.F., Heaney, F., Baumgartner, W.K. & Randall, R.E. Identification of an epitope on the P and V proteins of simian virus 5 that distinguishes between two isolates with different biological characteristics. J. Gen. Virol. 72, 1551–1557 (1991).

  73. 73

    Parks, A.L. et al. Systematic generation of high-resolution deletion coverage of the Drosophila melanogaster genome. Nat. Genet. 36, 288–292 (2004).

  74. 74

    Ferguson, K., Long, H., Cameron, S., Chang, W.T. & Rao, Y. The conserved Ig superfamily member Turtle mediates axonal tiling in Drosophila. J. Neurosci. 29, 14151–14159 (2009).

  75. 75

    Al-Anzi, B. & Wyman, R.J. The Drosophila immunoglobulin gene turtle encodes guidance molecules involved in axon pathfinding. Neural Dev. 4, 31 (2009).

  76. 76

    Tear, G. et al. commissureless controls growth cone guidance across the CNS midline in Drosophila and encodes a novel membrane protein. Neuron 16, 501–514 (1996).

  77. 77

    Nern, A. et al. An isoform-specific allele of Drosophila N-cadherin disrupts a late step of R7 targeting. Proc. Natl. Acad. Sci. USA 102, 12944–12949 (2005).

  78. 78

    Stapleton, M. et al. A Drosophila full-length cDNA resource. Genome Biol. 3, 0080 (2002).

  79. 79

    Lecuyer, E., Parthasarathy, N. & Krause, H.M. Fluorescent in situ hybridization protocols in Drosophila embryos and tissues. Methods Mol. Biol. 420, 289–302 (2008).

  80. 80

    Lehmann, R. & Tautz, D. In situ hybridization to RNA. Methods Cell Biol. 44, 575–598 (1994).

Download references

Acknowledgements

We thank B. Al-Anzi (California Institute of Technology), K. Basler, J. Bischof (University of Zurich), J. Bateman (Bowdoin College), K. Broadie (Vanderbilt University), M. Calos, L. Luo, A. Okada (Stanford University), W. Chia (National University of Singapore), A. DiAntonio (Washington University), B. Durand, A. Laurençon (University of Lyon), F. Karch (University of Geneva), X. Morin (Institute of Developmental Biology of Marseille), A. Nose (University of Tokyo), S. Oehler (University of Crete), A. Pavlopoulos (University of Cambridge), C. Potter (Johns Hopkins University), Y. Rao (McGill University), M. Ringuette, J. Shahab (University of Toronto), C. Savakis (Biomedical Sciences Research Center Alexander Fleming), T. Suzuki (Max Planck Institute of Neurobiology), C. Tan (University of Missouri), G. Tear (King's College London), R. Tsien (University of California San Diego), T. Wu (Harvard University), L. Zipursky (University of California Los Angeles), members of the BDSC and the Drosophila Genomics Resource Center (Indiana University), Addgene and members of the Developmental Studies Hybridoma Bank for flies, plasmids, antibodies and communications; S. Park and K. Wan for assistance in mapping MiMIC insertions; D. Bei, Y. Fang, J. Li, Z. Wang, X. Zheng and J. Yue for generating fly stocks; and T. Suzuki for communication of unpublished results. This work was funded by US National Institutes of Health grants 2R01 GM067858 to A.C.S., R.A.H. and H.J.B., and T32 GM07526-33 to K.J.T.V.; A.C.S. and H.J.B. are funded by the Howard Hughes Medical Institute.

Author information

K.J.T.V. designed the MiMIC technique and vectors, and performed all molecular biology, except for mapping of insertions. R.W.L., A.C.S., R.A.H. and H.J.B. conceived the application of MiMIC to the GDP. H.P. and Y.H. performed microinjections. K.J.T.V., H.P. and Y.H. performed fly genetics. M.E.-H. and R.A.H. mapped insertions. K.J.T.V., Y.H., M.E.-H., J.W.C., R.W.L. and R.A.H. analyzed insertion data, annotated insertions and prepared public database submissions. J.W.C. performed bioinformatic analysis. K.J.T.V., N.A.H. and H.P. verified RMCE events by PCR. K.J.T.V. and K.L.S. did staining of gene-trap events. K.L.S. and N.A.H. did staining of protein trap events. K.J.T.V., K.L.S., N.A.H. and H.J.B. analyzed expression patterns. K.J.T.V. and H.J.B. wrote the paper. R.A.H. and R.W.L. edited the paper.

Correspondence to Koen J T Venken or Hugo J Bellen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–6 and Supplementary Data (PDF 587 kb)

Rights and permissions

Reprints and Permissions

About this article

Further reading