Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools

Abstract

The protein ubiquitin is an important post-translational modifier that regulates a wide variety of biological processes. In cells, ubiquitin is apportioned among distinct pools, which include a variety of free and conjugated species. Although maintenance of a dynamic and complex equilibrium among ubiquitin pools is crucial for cell survival, the tools necessary to quantify each cellular ubiquitin pool have been limited. We have developed a quantitative mass spectrometry approach to measure cellular concentrations of ubiquitin species using isotope-labeled protein standards and applied it to characterize ubiquitin pools in cells and tissues. Our method is convenient, adaptable and should be a valuable tool to facilitate our understanding of this important signaling molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ubiquitin pools and assay overview.
Figure 2: Assay validation.
Figure 3: Effect of acute proteasome inhibition on ubiquitin pools.
Figure 4: Ub-PSAQ analysis of ubiquitin pools in cytosolic and histone-enriched fractions from HEK293 cells.

Similar content being viewed by others

References

  1. Ravid, T. & Hochstrasser, M. Diversity of degradation signals in the ubiquitin-proteasome system. Nat. Rev. Mol. Cell Biol. 9, 679–690 (2008).

    Article  CAS  Google Scholar 

  2. Mukhopadhyay, D. & Riezman, H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201–205 (2007).

    Article  CAS  Google Scholar 

  3. Zeng, W. et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315–330 (2010).

    Article  CAS  Google Scholar 

  4. Hoeller, D. & Dikic, I. Targeting the ubiquitin system in cancer therapy. Nature 458, 438–444 (2009).

    Article  CAS  Google Scholar 

  5. Lee, B.H. et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 179–184 (2010).

    Article  CAS  Google Scholar 

  6. Takada, K., Hibi, N., Tsukada, Y., Shibasaki, T. & Ohkawa, K. Ability of ubiquitin radioimmunoassay to discriminate between monoubiquitin and multi-ubiquitin chains. Biochim. Biophys. Acta 1290, 282–288 (1996).

    Article  Google Scholar 

  7. Haas, A.L. & Bright, P.M. The immunochemical detection and quantitation of intracellular ubiquitin-protein conjugates. J. Biol. Chem. 260, 12464–12473 (1985).

    CAS  PubMed  Google Scholar 

  8. Bennett, E.J. et al. Global changes to the ubiquitin system in Huntington's disease. Nature 448, 704–708 (2007).

    Article  CAS  Google Scholar 

  9. Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W. & Gygi, S.P. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. USA 100, 6940–6945 (2003).

    Article  CAS  Google Scholar 

  10. Kirkpatrick, D.S. et al. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat. Cell Biol. 8, 700–710 (2006).

    Article  CAS  Google Scholar 

  11. Brun, V. et al. Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol. Cell. Proteomics 6, 2139–2149 (2007).

    Article  CAS  Google Scholar 

  12. Catanzariti, A.M., Soboleva, T.A., Jans, D.A., Board, P.G. & Baker, R.T. An efficient system for high-level expression and easy purification of authentic recombinant proteins. Protein Sci. 13, 1331–1339 (2004).

    Article  CAS  Google Scholar 

  13. Reyes-Turcu, F.E. et al. The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 124, 1197–1208 (2006).

    Article  CAS  Google Scholar 

  14. Ryu, K.Y., Baker, R.T. & Kopito, R.R. Ubiquitin-specific protease 2 as a tool for quantification of total ubiquitin levels in biological specimens. Anal. Biochem. 353, 153–155 (2006).

    Article  CAS  Google Scholar 

  15. Ryu, K.Y. et al. The mouse polyubiquitin gene UbC is essential for fetal liver development, cell-cycle progression and stress tolerance. EMBO J. 26, 2693–2706 (2007).

    Article  CAS  Google Scholar 

  16. Dantuma, N.P., Groothuis, T.A., Salomons, F.A. & Neefjes, J. A dynamic ubiquitin equilibrium couples proteasomal activity to chromatin remodeling. J. Cell Biol. 173, 19–26 (2006).

    Article  CAS  Google Scholar 

  17. Mimnaugh, E.G., Chen, H.Y., Davie, J.R., Celis, J.E. & Neckers, L. Rapid deubiquitination of nucleosomal histones in human tumor cells caused by proteasome inhibitors and stress response inducers: effects on replication, transcription, translation, and the cellular stress response. Biochemistry 36, 14418–14429 (1997).

    Article  CAS  Google Scholar 

  18. Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133–145 (2009).

    Article  CAS  Google Scholar 

  19. Meierhofer, D., Wang, X., Huang, L. & Kaiser, P. Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J. Proteome Res. 7, 4566–4576 (2008).

    Article  CAS  Google Scholar 

  20. Phu, L. et al. Improved quantitative mass spectrometry methods for characterizing complex ubiquitin signals. Mol. Cell. Proteomics 10, M110.003756 (2011).

    Article  Google Scholar 

  21. Kim, H.T. et al. Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J. Biol. Chem. 282, 17375–17386 (2007).

    Article  CAS  Google Scholar 

  22. Raasi, S., Varadan, R., Fushman, D. & Pickart, C.M. Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nat. Struct. Mol. Biol. 12, 708–714 (2005).

    Article  CAS  Google Scholar 

  23. Zhang, D., Raasi, S. & Fushman, D. Affinity makes the difference: nonselective interaction of the UBA domain of Ubiquilin-1 with monomeric ubiquitin and polyubiquitin chains. J. Mol. Biol. 377, 162–180 (2008).

    Article  CAS  Google Scholar 

  24. Raasi, S., Orlov, I., Fleming, K.G. & Pickart, C.M. Binding of polyubiquitin chains to ubiquitin-associated (UBA) domains of HHR23A. J. Mol. Biol. 341, 1367–1379 (2004).

    Article  CAS  Google Scholar 

  25. Song, J. et al. Stability of thioester intermediates in ubiquitin-like modifications. Protein Sci. 18, 2492–2499 (2009).

    Article  CAS  Google Scholar 

  26. Newton, K. et al. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134, 668–678 (2008).

    Article  CAS  Google Scholar 

  27. Riley, B.E. et al. Ubiquitin accumulation in autophagy-deficient mice is dependent on the Nrf2-mediated stress response pathway: a potential role for protein aggregation in autophagic substrate selection. J. Cell Biol. 191, 537–552 (2010).

    Article  CAS  Google Scholar 

  28. Hosokawa, N., Hara, Y. & Mizushima, N. Generation of cell lines with tetracycline-regulated autophagy and a role for autophagy in controlling cell size. FEBS Lett. 580, 2623–2629 (2006).

    Article  CAS  Google Scholar 

  29. Eftekharzadeh, B., Maghsoudi, N. & Khodagholi, F. Stabilization of transcription factor Nrf2 by tBHQ prevents oxidative stress-induced amyloid beta formation in NT2N neurons. Biochimie 92, 245–253 (2010).

    Article  CAS  Google Scholar 

  30. Shechter, D., Dormann, H.L., Allis, C.D. & Hake, S.B. Extraction, purification and analysis of histones. Nat. Protoc. 2, 1445–1457 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Bennett, M. Reese and M. Bowen for discussions and critical reading of the manuscript. This work was funded in part by a grant (NS 04842) from the US National Institute of Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Contributions

S.E.K. and R.R.K. devised the Ub-PSAQ strategy with contributions from B.E.R. and T.A.S.; S.E.K. prepared all protein affinity reagents and standards, performed the experiments and analyzed the data with input from B.E.R. and T.A.S.; B.E.R. prepared all cellular samples; T.A.S. performed all mass spectrometry analyses; and R.S.T. contributed to mass spectrometry data analysis. S.E.K. and R.R.K. wrote the manuscript, and B.E.R. contributed to figure preparation. B.E.R., T.A.S. and R.S.T. contributed to editing. C.H.B. and H.S. contributed to conceptual and experimental design. All authors discussed the results and manuscript.

Corresponding author

Correspondence to Ron R Kopito.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 2003 kb)

Supplementary Data 1

Overview of Ub-PSAQ analysis using the samples described in Figure 3b as an example. (XLS 225 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiser, S., Riley, B., Shaler, T. et al. Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nat Methods 8, 691–696 (2011). https://doi.org/10.1038/nmeth.1649

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1649

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing