Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fluorogenic DNA sequencing in PDMS microreactors

Abstract

We developed a multiplex sequencing-by-synthesis method combining terminal phosphate–labeled fluorogenic nucleotides (TPLFNs) and resealable polydimethylsiloxane (PDMS) microreactors. In the presence of phosphatase, primer extension by DNA polymerase using nonfluorescent TPLFNs generates fluorophores, which are confined in the microreactors and detected. We immobilized primed DNA templates in the microreactors, then sequentially introduced one of the four identically labeled TPLFNs, sealed the microreactors and recorded a fluorescence image after template-directed primer extension. With cycle times of <10 min, we demonstrate 30 base reads with 99% raw accuracy. Our 'fluorogenic pyrosequencing' offers benefits of pyrosequencing, such as rapid turnaround, one-color detection and generation of native DNA, along with high detection sensitivity and simplicity of parallelization because simultaneous real-time monitoring of all microreactors is not required.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluorogenic pyrosequencing chemistry and workflow.
Figure 2: Schematic of the fluorogenic pyrosequencing system.
Figure 3: Fluorogenic pyrosequencing images and homopolymer analysis.
Figure 4: Sequencing traces of quasi-random sequences and analysis of global errors.

Similar content being viewed by others

References

  1. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlen, M. & Nyren, P. Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem. 242, 84–89 (1996).

    Article  CAS  Google Scholar 

  3. Rothberg, J.M. et al. Methods and apparatus for measuring analytes using large-scale FET arrays. International patent WO 2010/008480 A2 (2010).

  4. Bentley, D.R. et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Harris, T.D. et al. Single molecule DNA sequencing of a viral genome. Science 320, 106–109 (2008).

    Article  CAS  Google Scholar 

  6. McKernan, K.J. et al. Sequence and structure variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res. 19, 1527–1541 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Shendure, J. et al. Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728–1732 (2005).

    Article  CAS  Google Scholar 

  8. Drmanac, R. et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science 327, 78–81 (2010).

    Article  CAS  Google Scholar 

  9. Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138 (2009).

    Article  CAS  Google Scholar 

  10. Kumar, S. et al. Terminal phosphate-labeled nucleotides: synthesis, applications, and linker effect on incorporation by DNA polymerases. Nucleosides Nucleotides Nucleic Acids 24, 401–408 (2005).

    Article  CAS  Google Scholar 

  11. Sood, A. et al. Terminal phosphate-labeled nucleotides with improved substrate properties for homogeneous nucleic acid assays. J. Am. Chem. Soc. 127, 2394–2395 (2005).

    Article  CAS  Google Scholar 

  12. Kozlov, M., Bergendahl, V., Burgess, R., Goldfarb, A. & Mustaev, A. Homogeneous fluorescent assay for RNA polymerase. Anal. Biochem. 342, 206–213 (2005).

    Article  CAS  Google Scholar 

  13. Rondelez, Y. et al. Microfabricated arrays of femtoliter chambers allow single molecule enzymology. Nat. Biotechnol. 23, 361–365 (2005).

    Article  CAS  Google Scholar 

  14. Korlach, J. et al. Long, processive enzymatic DNA synthesis using 100% dye-labeled terminal phosphate-linked nucleotides. Nucleosides Nucleotides Nucleic Acids 27, 1072–1083 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Ankilova, V.N., Knorre, D.G., Kravchenko, V.V., Lavrik, O.I. & Nevinsky, G.A. Investigation of the phenylalanyl-tRNA synthetase modification with gamma-(p-azidoanilide-)-ATP. FEBS Lett. 60, 172–175 (1975).

    Article  CAS  PubMed  Google Scholar 

  16. Yarbrough, L.R. Synthesis and properties of a new fluorescent analog of ATP: adenosine-5′-triphosphoro-γ-1-(5-sulfonic acid) napthylamidate. Biochem. Biophys. Res. Commun. 81, 35–41 (1978).

    Article  CAS  PubMed  Google Scholar 

  17. Grachev, M.A. & Zaychikov, E.F. ATP gamma-anilidate: a substrate of DNA-dependent RNA-polymerase of Escherichia coli. FEBS Lett. 49, 163–166 (1974).

    Article  CAS  PubMed  Google Scholar 

  18. Takakusa, H., Kikuchi, K., Urano, Y., Kojima, H. & Negano, T. A novel design method of ratiometric fluorescent probes based on fluorescence resonance energy transfer switching by spectral overlap. Chem. Eur. J. 9, 1479–1485 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. McDonald, J.C. & Whitesides, G.M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491–499 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Piruska, A. et al. The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 5, 1348–1354 (2005).

    Article  CAS  Google Scholar 

  21. Liu, D., Perdue, R.K., Sun, L. & Crooks, R.M. Immobilization of DNA onto poly(dimethylsiloxane) surfaces and application to a microelectrochemical enzyme-amplified DNA hybridization assay. Langmuir 20, 5905–5910 (2004).

    Article  CAS  Google Scholar 

  22. Gorris, H.H., Rissin, D.M. & Walt, D.R. Stochastic inhibitor release and binding from single enzyme molecules. Proc. Natl. Acad. Sci. USA 104, 17680–17685 (2007).

    Article  CAS  Google Scholar 

  23. Leamon, J.H. & Rothberg, J.M. Cramming more sequencing reactions onto microreactor chips. Chem. Rev. 107, 3367–3376 (2007).

    Article  CAS  Google Scholar 

  24. Erlich, Y. et al. Alta-cyclic: a self-optimizing base caller for next-generation sequencing. Nat. Methods 5, 679–682 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Dressman, D., Yan, H., Traverso, G., Kinzler, K.W. & Vogelstein, B. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc. Natl. Acad. Sci. USA 100, 8817–8822 (2003).

    Article  CAS  Google Scholar 

  26. Hatch, A., Sano, T., Misasi, J. & Smith, C.L. Rolling circle amplification of DNA immobilized on solid surfaces and its application to multiplex mutation detection. Genet. Anal. 15, 35–40 (1999).

    Article  CAS  Google Scholar 

  27. Marcus, J.S., Anderson, W.F. & Quake, S.R. Microfluidic single-cell mRNA isolation and analysis. Anal. Chem. 78, 3084–3089 (2006).

    Article  CAS  Google Scholar 

  28. Fan, H.C., Wang, J., Potanina, A. & Quake, S.R. Whole-genome molecular haplotyping of single cells. Nat. Biotechnol. 29, 51–57 (2011).

    Article  CAS  Google Scholar 

  29. Tewhey, R. et al. Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat. Biotechnol. 27, 1025–1031 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Frimat, J.P. et al. Plasma stenciling methods for cell patterning. Anal. Bioanal. Chem. 395, 601–609 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health National Human Genome Research Institute (HG005097-01) to X.S.X. and US National Institutes of Health National Human Genome Research Institute Recovery Act Grand Opportunities grant (1RC2HG005613-01) to X.S.X. W.J.G. is a Damon Runyon Fellow supported by the Damon Runyon Cancer Research Foundation (DRG-2000 09). We acknowledge J. Foley, S. Song, L. Song, G. Holtom and K. Fiala for valuable discussions and technical assistance. This work was performed in part at the Center for Nanoscale Systems, which is a part of Harvard University and a member of the National Nanotechnology Infrastructure Network, which is supported by the National Science Foundation award ECS-0335765.

Author information

Authors and Affiliations

Authors

Contributions

P.A.S., W.J.G. and X.S.X. conceived the fluorogenic pyrosequencing concept. P.A.S. and W.J.G. constructed the sequencing apparatus. H.D. synthesized the TPLFNs. P.A.S. collected and analyzed the data. W.J.G. carried out the microfabrication. P.A.S., W.J.G., H.D. and X.S.X. wrote the manuscript.

Corresponding author

Correspondence to X Sunney Xie.

Ethics declarations

Competing interests

Harvard University has filed patent applications based on this work.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1 and Supplementary Notes 1–3 (PDF 534 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sims, P., Greenleaf, W., Duan, H. et al. Fluorogenic DNA sequencing in PDMS microreactors. Nat Methods 8, 575–580 (2011). https://doi.org/10.1038/nmeth.1629

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1629

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing