Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Sharper low-power STED nanoscopy by time gating

Abstract

Applying pulsed excitation together with time-gated detection improves the fluorescence on-off contrast in continuous-wave stimulated emission depletion (CW-STED) microscopy, thus revealing finer details in fixed and living cells using moderate light intensities. This method also enables super-resolution fluorescence correlation spectroscopy with CW-STED beams, as demonstrated by quantifying the dynamics of labeled lipid molecules in the plasma membrane of living cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of g-STED.
Figure 2: g-STED fluorescence nanoscopy.
Figure 3: g-STED-FCS.

Similar content being viewed by others

References

  1. Hell, S.W. & Wichmann, J. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  Google Scholar 

  2. Klar, T.A., Jakobs, S., Dyba, M., Egner, A. & Hell, S.W. Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).

    Article  CAS  Google Scholar 

  3. Hell, S.W. Nat. Methods 6, 24–32 (2009).

    Article  CAS  Google Scholar 

  4. Eggeling, C. et al. Nature 457, 1159–1162 (2009).

    Article  CAS  Google Scholar 

  5. Willig, K.I., Harke, B., Medda, R. & Hell, S.W. Nat. Methods 4, 915–918 (2007).

    Article  CAS  Google Scholar 

  6. Moneron, G. et al. Opt. Express 18, 1302–1309 (2010).

    Article  CAS  Google Scholar 

  7. Donnert, G. et al. Proc. Natl. Acad. Sci. USA 103, 11440–11445 (2006).

    Article  CAS  Google Scholar 

  8. Leutenegger, M., Eggeling, C. & Hell, S.W. Opt. Express 18, 26417–26429 (2010).

    Article  CAS  Google Scholar 

  9. Schrader, M. et al. Bioimaging 3, 147–153 (1995).

    Article  CAS  Google Scholar 

  10. Westphal, V. & Hell, S.W. Phys. Rev. Lett. 94, 143903 (2005).

    Article  Google Scholar 

  11. Auksorius, E. et al. Opt. Lett. 33, 113–115 (2008).

    Article  Google Scholar 

  12. Hell, S.W., Jakobs, S. & Kastrup, L. Appl. Phys., A Mater. Sci. Process. 77, 859–860 (2003).

    Article  CAS  Google Scholar 

  13. Ringemann, C. et al. N. J. Phys. 11, 103054 (2009).

    Article  Google Scholar 

  14. Han, K.Y. et al. Nano Lett. 9, 3323–3329 (2009).

    Article  CAS  Google Scholar 

  15. Jelezko, F. & Wrachtrup, J. Phys. Status Solidi A 203, 3207–3225 (2006).

    Article  CAS  Google Scholar 

  16. Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A. & Tsien, R.Y. J. Biol. Chem. 276, 29188–29194 (2001).

    Article  CAS  Google Scholar 

  17. Lamesch, P. et al. Genomics 89, 307–315 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Chiantia, S., Ries, J., Kahya, N. & Schwille, P. ChemPhysChem 7, 2409–2418 (2006).

    Article  CAS  Google Scholar 

  19. Widengren, J., Mets, U. & Rigler, R. J. Phys. Chem. 99, 13368–13379 (1995).

    Article  CAS  Google Scholar 

  20. Zander, C. et al. Appl. Phys. B 63, 517–523 (1996).

    Article  CAS  Google Scholar 

  21. Maus, M. et al. Anal. Chem. 73, 2078–2086 (2001).

    Article  CAS  Google Scholar 

  22. Cotlet, M. et al. J. Phys. Chem. B 105, 4999–5006 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Schönle and M. Leutenegger for fruitful discussions, A. Schönle for support with the software Imspector, V. Müller and A. Honigmann for support with the FCS measurements, and U. Gemm for support with the electronics. C. Wurm, T. Gilat and E. Rothermel helped prepare samples.

Author information

Authors and Affiliations

Authors

Contributions

G.V., G.M., J.E., C.E. and S.W.H. conceived and designed the study. G.V. performed theoretical studies. V.W. designed electronic components. G.V., G.M., K.Y.H., H.T. and M.R. performed experiments. G.V., G.M., K.Y.H. and C.E. analyzed data. G.V., G.M., C.E. and S.W.H. wrote the manuscript. All authors discussed the conceptual and practical implications of the method at all stages.

Corresponding author

Correspondence to Stefan W Hell.

Ethics declarations

Competing interests

G.V., G.M., K.Y.H, V.W., M.R., J.E., C.E. and S.W.H. have filed a patent application on the method presented.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Note 1 (PDF 4079 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vicidomini, G., Moneron, G., Han, K. et al. Sharper low-power STED nanoscopy by time gating. Nat Methods 8, 571–573 (2011). https://doi.org/10.1038/nmeth.1624

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1624

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing