Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In vivo protein trapping produces a functional expression codex of the vertebrate proteome


We describe a conditional in vivo protein-trap mutagenesis system that reveals spatiotemporal protein expression dynamics and can be used to assess gene function in the vertebrate Danio rerio. Integration of pGBT-RP2.1 (RP2), a gene-breaking transposon containing a protein trap, efficiently disrupts gene expression with >97% knockdown of normal transcript amounts and simultaneously reports protein expression for each locus. The mutant alleles are revertible in somatic tissues via Cre recombinase or splice-site-blocking morpholinos and are thus to our knowledge the first systematic conditional mutant alleles outside the mouse model. We report a collection of 350 zebrafish lines that include diverse molecular loci. RP2 integrations reveal the complexity of genomic architecture and gene function in a living organism and can provide information on protein subcellular localization. The RP2 mutagenesis system is a step toward a unified 'codex' of protein expression and direct functional annotation of the vertebrate genome.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: RP2 gene-break transposon and reversion systems.
Figure 2: Protein expression codex: examples of protein-trap expression patterns.
Figure 3: Protein-trap integrations into muscle-specific genes.
Figure 4: Secretion of mRFP fusions.

Accession codes


NCBI Reference Sequence


  1. Stevens, C.W. The evolution of vertebrate opioid receptors. Front. Biosci. 14, 1247–1269 (2009).

    Article  CAS  Google Scholar 

  2. Huxley-Jones, J., Robertson, D.L. & Boot-Handford, R.P. On the origins of the extracellular matrix in vertebrates. Matrix Biol. 26, 2–11 (2007).

    Article  CAS  Google Scholar 

  3. Sauka-Spengler, T. & Bronner-Fraser, M. Evolution of the neural crest viewed from a gene regulatory perspective. Genesis 46, 673–682 (2008).

    Article  Google Scholar 

  4. Balciunas, D. et al. Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet. 2, e169 (2006).

    Article  Google Scholar 

  5. Urasaki, A., Morvan, G. & Kawakami, K. Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics 174, 639–649 (2006).

    Article  CAS  Google Scholar 

  6. Sivasubbu, S. et al. Gene-breaking transposon mutagenesis reveals an essential role for histone H2afza in zebrafish larval development. Mech. Dev. 123, 513–529 (2006).

    Article  CAS  Google Scholar 

  7. Petzold, A.M. et al. Nicotine response genetics in the zebrafish. Proc. Natl. Acad. Sci. USA 106, 18662–18667 (2009).

    Article  CAS  Google Scholar 

  8. Branda, C.S. & Dymecki, S.M. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004).

    Article  CAS  Google Scholar 

  9. Parinov, S., Kondrichin, I., Korzh, V. & Emelyanov, A. Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev. Dyn. 231, 449–459 (2004).

    Article  CAS  Google Scholar 

  10. Balciunas, D. et al. Enhancer trapping in zebrafish using the Sleeping Beauty transposon. BMC Genomics 5, 62 (2004).

    Article  Google Scholar 

  11. Kawakami, K. et al. A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev. Cell 7, 133–144 (2004).

    Article  CAS  Google Scholar 

  12. Munoz-Sanjuan, I., Simandl, B.K., Fallon, J.F. & Nathans, J. Expression of chicken fibroblast growth factor homologous factor (FHF)-1 and of differentially spliced isoforms of FHF-2 during development and involvement of FHF-2 in chicken limb development. Development 126, 409–421 (1999).

    CAS  PubMed  Google Scholar 

  13. Holland, P.W. Beyond the Hox: how widespread is homeobox gene clustering? J. Anat. 199, 13–23 (2001).

    Article  CAS  Google Scholar 

  14. Coulombe, Y. et al. Multiple promoters and alternative splicing: Hoxa5 transcriptional complexity in the mouse embryo. PLoS ONE 5, e10600 (2010).

    Article  Google Scholar 

  15. Hadrys, T., Prince, V., Hunter, M., Baker, R. & Rinkwitz, S. Comparative genomic analysis of vertebrate Hox3 and Hox4 genes. J. Exp. Zoolog. B Mol. Dev. Evol. 302, 147–164 (2004).

    Article  Google Scholar 

  16. Chen, J.N. et al. Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development 123, 293–302 (1996).

    CAS  PubMed  Google Scholar 

  17. Sehnert, A.J. et al. Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat. Genet. 31, 106–110 (2002).

    Article  CAS  Google Scholar 

  18. Hirata, H. et al. Zebrafish relatively relaxed mutants have a ryanodine receptor defect, show slow swimming and provide a model of multi-minicore disease. Development 134, 2771–2781 (2007).

    Article  CAS  Google Scholar 

  19. Schoenauer, R. et al. Myomesin 3, a novel structural component of the M-band in striated muscle. J. Mol. Biol. 376, 338–351 (2008).

    Article  CAS  Google Scholar 

  20. Klee, E.W. The zebrafish secretome. Zebrafish 5, 131–138 (2008).

    Article  CAS  Google Scholar 

  21. Carney, T.J. et al. Genetic analysis of fin development in zebrafish identifies furin and hemicentin1 as potential novel fraser syndrome disease genes. PLoS Genet. 6, e1000907 (2010).

    Article  Google Scholar 

  22. Gautier, P., Naranjo-Golborne, C., Taylor, M.S., Jackson, I.J. & Smyth, I. Expression of the fras1/frem gene family during zebrafish development and fin morphogenesis. Dev. Dyn. 237, 3295–3304 (2008).

    Article  CAS  Google Scholar 

  23. van Eeden, F.J. et al. Genetic analysis of fin formation in the zebrafish, Danio rerio. Development 123, 255–262 (1996).

    CAS  Google Scholar 

  24. Friedel, R.H. & Soriano, P. in Methods in Enzymology Vol. 477 (eds., Wassarman, P.M. & Soriano, P.M.) 243–269 (Academic Press, 2010).

  25. Aleksic, J., Lazic, R., Müller, I., Russell, S.R. & Adryan, B. Biases in Drosophila melanogaster protein trap screens. BMC Genomics 10, 249 (2009).

    Article  Google Scholar 

  26. Buszczak, M. et al. The carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 175, 1505–1531 (2007).

    Article  CAS  Google Scholar 

  27. Morin, X., Daneman, R., Zavortink, M. & Chia, W. A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc. Natl. Acad. Sci. USA 98, 15050–15055 (2001).

    Article  CAS  Google Scholar 

  28. Nord, A.S. et al. Modeling insertional mutagenesis using gene length and expression in murine embryonic stem cells. PLoS ONE 2, e617 (2007).

    Article  Google Scholar 

  29. Skarnes, W.C. et al. A public gene trap resource for mouse functional genomics. Nat. Genet. 36, 543–544 (2004).

    Article  CAS  Google Scholar 

  30. Cormack, B.P., Valdivia, R.H. & Falkow, S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996).

    Article  CAS  Google Scholar 

  31. Gibbs, P. & Schmale, M. GFP as a genetic marker scorable throughout the life cycle of transgenic zebra fish. Mar. Biotechnol. 2, 107–125 (2000).

    CAS  PubMed  Google Scholar 

  32. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  Google Scholar 

  33. Petzold, A.M. et al. SCORE imaging: specimen in a corrected optical rotational enclosure. Zebrafish 7, 149–154 (2010).

    Article  Google Scholar 

  34. Clark, K.J., Geurts, A.M., Bell, J.B. & Hackett, P.B. Transposon vectors for gene-trap insertional mutagenesis in vertebrates. Genesis 39, 225–233 (2004).

    Article  CAS  Google Scholar 

  35. Thisse, C. & Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59–69 (2008).

    Article  CAS  Google Scholar 

  36. Bill, B.R., Petzold, A.M., Clark, K.J., Schimmenti, L.A. & Ekker, S.C. A primer for morpholino use in zebrafish. Zebrafish 6, 69–77 (2009).

    Article  CAS  Google Scholar 

Download references


The US National Institute on Drug Abuse (DA14546), US National Institute of General Medical Sciences (GM63904), National Institute of Diabetes and Digestive and Kidney Diseases (F30DK083219 and P30DK084567) and the Mayo Foundation provided funding for this research. S.S. and V.S. acknowledge funding support from the Council of Scientific and Industrial Research (grant FAC002), India. We thank members of the Center for Genome Engineering at the University of Minnesota for providing collaborative discussion and resources, the staff of the Zebrafish Core Facility at the Mayo Clinic for providing zebrafish care, D. Argue for programming the zfishbook website, E. Klee for bioinformatic analyses of the zebrafish transcriptome used in theoretical design and testing of the RP2 system, A. Person for assistance in injection of fluorescently labeled dextrans, and InSciEd Out participants and Summer Undergraduate Research Fellow, N. Boczek, for imaging RFP-expressing fish.

Author information

Authors and Affiliations



K.J.C., D.B., S.S. and S.C.E. designed the experiments. D.B. built R14, R15, R16, RP2 and pEF1a-cd99l2-RFP vectors. S.S. built pX. J.N. made the pEF1a-RFP vector. D.B. piloted the production of R14, R15 and R16 lines. K.J.C. trained and managed the team that produced >300 RP2 lines and molecularly characterized lines other than GBT0031, GBT0039 and GBT0043 (D.B.). M.D.U., T.M.G., A.L.N., K.J.S. and K.J.C. identified and propagated mRFP-expressing lines. A.M.P., M.D.U. and K.J.C. photographed mRFP expression patterns. K.J.S. and K.J.C. molecularly characterized lines by 5′ rapid amplification of cDNA ends, inverse PCR and quantitative PCR. T.M.G., K.J.C. and D.B. characterized the reversion of GBT0031 by Cre mRNA and morpholino injection. D.B. injected fluorescently conjugated dextran into GBT0046 and imaged its uptake. J.N. imaged GBT0043 fish and together with K.J.C. injected fish with EF1a-RFP and EF1a-cd99l2-RFP vectors. K.J.C. imaged the injected fish. S.E.W. analyzed the GBT0156/frasI phenotype and reversion. V.M.B. conducted in situ hybridizations. Y.D. identified GBT0348 in a screen performed in X.X.'s laboratory and contributed quantitative PCR data for three more RP2 lines. H.-M.P. tested the GBT protocol in M.H.'s lab and produced several independent lines, including the initial assessment and imaging of GBT0040. A.P., V.S. and S.S. produced and analyzed 3′ exon trap data for Supplementary Figure 2. K.J.C. and S.C.E. were primary authors of the text.

Corresponding author

Correspondence to Stephen C Ekker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2, Supplementary Tables 1–2 and Supplementary Note (PDF 4469 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Clark, K., Balciunas, D., Pogoda, HM. et al. In vivo protein trapping produces a functional expression codex of the vertebrate proteome. Nat Methods 8, 506–512 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing