Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mapping of signaling networks through synthetic genetic interaction analysis by RNAi

Abstract

The analysis of synthetic genetic interaction networks can reveal how biological systems achieve a high level of complexity with a limited repertoire of components. Studies in yeast and bacteria have taken advantage of collections of deletion strains to construct matrices of quantitative interaction profiles and infer gene function. Yet comparable approaches in higher organisms have been difficult to implement in a robust manner. Here we report a method to identify genetic interactions in tissue culture cells through RNAi. By performing more than 70,000 pairwise perturbations of signaling factors, we identified >600 interactions affecting different quantitative phenotypes of Drosophila melanogaster cells. Computational analysis of this interaction matrix allowed us to reconstruct signaling pathways and identify a conserved regulator of Ras-MAPK signaling. Large-scale genetic interaction mapping by RNAi is a versatile, scalable approach for revealing gene function and the connectivity of cellular networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A multiparametric approach to identify genetic interactions through double-RNAi.
Figure 2: Clustering of genetic interaction profiles predicts gene function.
Figure 3: Phenotype-specific genetic interactions.
Figure 4: Multiparametric detection of interactions.
Figure 5: Cka is a conserved regulator of Ras/MAPK signaling.

Similar content being viewed by others

References

  1. Farha, M.A. & Brown, E.D. Chemical probes of Escherichia coli uncovered through chemical-chemical interaction profiling with compounds of known biological activity. Chem. Biol. 17, 852–862 (2010).

    Article  CAS  Google Scholar 

  2. Collins, S.R. et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446, 806–810 (2007).

    Article  CAS  Google Scholar 

  3. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).

    Article  CAS  Google Scholar 

  4. Bakal, C. et al. Phosphorylation networks regulating JNK activity in diverse genetic backgrounds. Science 322, 453–456 (2008).

    Article  CAS  Google Scholar 

  5. Bruckner, K. et al. The PDGF/VEGF receptor controls blood cell survival in Drosophila . Dev. Cell 7, 73–84 (2004).

    Article  Google Scholar 

  6. Sims, D., Duchek, P. & Baum, B. PDGF/VEGF signaling controls cell size in Drosophila . Genome Biol. 10, R20 (2009).

    Article  Google Scholar 

  7. Tong, A.H. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).

    Article  CAS  Google Scholar 

  8. Lehar, J. et al. Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat. Biotechnol. 27, 659–666 (2009).

    Article  CAS  Google Scholar 

  9. Horn, T., Sandmann, T. & Boutros, M. Design and evaluation of genome-wide libraries for RNA interference screens. Genome Biol. 11, R61 (2010).

    Article  Google Scholar 

  10. Ridley, A.J. Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol. 16, 522–529 (2006).

    Article  CAS  Google Scholar 

  11. Yu, J., Pacifico, S., Liu, G. & Finley, R.L. Jr. DroID: the Drosophila Interactions Database, a comprehensive resource for annotated gene and protein interactions. BMC Genomics 9, 461 (2008).

    Article  Google Scholar 

  12. McPherson, P.S., Takei, K., Schmid, S.L. & De Camilli, P. p145, a major Grb2-binding protein in brain, is co-localized with dynamin in nerve terminals where it undergoes activity-dependent dephosphorylation. J. Biol. Chem. 269, 30132–30139 (1994).

    CAS  PubMed  Google Scholar 

  13. Friedman, A. & Perrimon, N. A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature 444, 230–234 (2006).

    Article  CAS  Google Scholar 

  14. Chen, H.W. et al. CKA, a novel multidomain protein, regulates the JUN N-terminal kinase signal transduction pathway in Drosophila . Mol. Cell. Biol. 22, 1792–1803 (2002).

    Article  CAS  Google Scholar 

  15. Reich, A., Sapir, A. & Shilo, B. Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development 126, 4139–4147 (1999).

    CAS  PubMed  Google Scholar 

  16. Wassarman, D.A. et al. Protein phosphatase 2A positively and negatively regulates Ras1-mediated photoreceptor development in Drosophila . Genes Dev. 10, 272–278 (1996).

    Article  CAS  Google Scholar 

  17. Ory, S., Zhou, M., Conrads, T.P., Veenstra, T.D. & Morrison, D.K. Protein phosphatase 2A positively regulates Ras signaling by dephosphorylating KSR1 and Raf-1 on critical 14–3-3 binding sites. Curr. Biol. 13, 1356–1364 (2003).

    Article  CAS  Google Scholar 

  18. Goudreault, M. et al. A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol. Cell. Proteomics 8, 157–171 (2009).

    Article  CAS  Google Scholar 

  19. Ribeiro, P.S. et al. Combined functional genomic and proteomic approaches identify a PP2A complex as a negative regulator of Hippo signaling. Mol. Cell 39, 521–534 (2010).

    Article  CAS  Google Scholar 

  20. Byrne, A.B. et al. A global analysis of genetic interactions in Caenorhabditis elegans . J. Biol. 6, 8 (2007).

    Article  Google Scholar 

  21. Lehner, B., Crombie, C., Tischler, J., Fortunato, A. & Fraser, A.G. Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nat. Genet. 38, 896–903 (2006).

    Article  CAS  Google Scholar 

  22. Luo, J. et al. A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137, 835–848 (2009).

    Article  CAS  Google Scholar 

  23. Mani, R., St Onge, R.P., Hartman, J.L.t., Giaever, G. & Roth, F.P. Defining genetic interaction. Proc. Natl. Acad. Sci. USA 105, 3461–3466 (2008).

    Article  CAS  Google Scholar 

  24. Baryshnikova, A. et al. Quantitative analysis of fitness and genetic interactions in yeast on a genome scale. Nat. Methods 7, 1017–1024 (2010).

    Article  CAS  Google Scholar 

  25. Casey, F.P., Cagney, G., Krogan, N.J. & Shields, D.C. Optimal stepwise experimental design for pairwise functional interaction studies. Bioinformatics 24, 2733–2739 (2008).

    Article  CAS  Google Scholar 

  26. Battle, A., Jonikas, M.C., Walter, P., Weissman, J.S. & Koller, D. Automated identification of pathways from quantitative genetic interaction data. Mol. Syst. Biol. 6, 379 (2010).

    Article  Google Scholar 

  27. Manolio, T.A. et al. Finding the missing heritability of complex diseases. Nature 461, 747–753 (2009).

    Article  CAS  Google Scholar 

  28. Dowell, R.D. et al. Genotype to phenotype: a complex problem. Science 328, 469 (2010).

    Article  CAS  Google Scholar 

  29. Shao, H. et al. Genetic architecture of complex traits: large phenotypic effects and pervasive epistasis. Proc. Natl. Acad. Sci. USA 105, 19910–19914 (2008).

    Article  CAS  Google Scholar 

  30. Tweedie, S. et al. FlyBase: enhancing Drosophila Gene Ontology annotations. Nucleic Acids Res. 37, D555–D559 (2009).

    Article  CAS  Google Scholar 

  31. Boutros, M. et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835 (2004).

    Article  CAS  Google Scholar 

  32. Steinbrink, S. & Boutros, M. RNAi screening in cultured Drosophila cells. Methods Mol. Biol. 420, 139–153 (2008).

    Article  CAS  Google Scholar 

  33. Han, K. An efficient DDAB-mediated transfection of Drosophila S2 cells. Nucleic Acids Res. 24, 4362–4363 (1996).

    Article  CAS  Google Scholar 

  34. Arvidsson, S., Kwasniewski, M., Riano-Pachon, D.M. & Mueller-Roeber, B. QuantPrime–a flexible tool for reliable high-throughput primer design for quantitative PCR. BMC Bioinformatics 9, 465 (2008).

    Article  Google Scholar 

  35. Norton, B. & Pearson, E.S. A note on the background to and refereeing of R.A. Fisher's 1918 paper. Notes Rec. R. Soc. Lond. 31, 151–162 (1976).

    Article  CAS  Google Scholar 

  36. Lönnstedt, I. & Speed, T.P. Replicated microarray data. Statist. Sinica 12, 31–46 (2002).

    Google Scholar 

  37. Smyth, G.K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, 3 (2004).

    Article  Google Scholar 

  38. Storey, J.D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100, 9440–9445 (2003).

    Article  CAS  Google Scholar 

  39. Weng, L. & Du, W. Role of Cka in imaginal disc growth and differentiation. Drosoph. Inf. Serv. 85, 8–12 (2002).

    Google Scholar 

Download references

Acknowledgements

We thank A.-C. Gavin, A. Teleman and F. Markowetz for helpful comments on the manuscript, N. Perrimon (Harvard Medical School), W. Du (University of Chicago) and S. Hou (National Cancer Institute–Frederick) for sharing reagents and fly stocks, members of the Drosophila Genomics Resource Center for providing plasmids, members of the Bloomington Drosophila stock center for fly stocks and the information technology Service Units of the European Molecular Biology Laboratory and the German Cancer Research Center, for technical support; and A. Kiger and R. Gentleman for helpful discussions. The work was supported in part by a fellowship of the Studienstiftung (T.H.), the CellNetworks Cluster of Excellence (T.S.), a program grant of the Human Frontiers Sciences Program (W.H. and M.B.) and the EU FP7 project CancerPathways (W.H. and M.B.).

Author information

Authors and Affiliations

Authors

Contributions

T.H., T.S., B.F., W.H. and M.B. designed the study; T.H. and T.S. performed the experiments; B.F. analyzed the data; E.A. performed initial analyses; T.S., T.H., B.F., W.H. and M.B. wrote the manuscript.

Corresponding authors

Correspondence to Wolfgang Huber or Michael Boutros.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–22, Supplementary Tables 2,4,5 (PDF 6273 kb)

Supplementary Table 1

Primer and amplicon sequences for all targeted genes (XLS 122 kb)

Supplementary Table 3

Genetic interaction data based on cell number, nuclear area, fluorescent intensity (XLS 5363 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horn, T., Sandmann, T., Fischer, B. et al. Mapping of signaling networks through synthetic genetic interaction analysis by RNAi. Nat Methods 8, 341–346 (2011). https://doi.org/10.1038/nmeth.1581

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1581

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing