Abstract
High-throughput gene expression screens provide a quantitative picture of the average expression signature of biological samples. However, the analysis of spatial gene expression patterns with single-cell resolution requires quantitative in situ measurement techniques. Here we describe recent technological advances in RNA fluorescence in situ hybridization (FISH) techniques that facilitate detection of individual fluorescently labeled mRNA molecules of practically any endogenous gene. These methods, which are based on advances in probe design, imaging technology and image processing, enable the absolute measurement of transcript abundance in individual cells with single-molecule resolution.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).
Heller, R.A. et al. Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proc. Natl. Acad. Sci. USA 94, 2150–2155 (1997).
Sorlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 98, 10869–10874 (2001).
van't Veer, L.J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–536 (2002).
Levsky, J.M. & Singer, R.H. Gene expression and the myth of the average cell. Trends Cell Biol. 13, 4–6 (2003).
Raj, A. & van Oudenaarden, A. Nature, nurture or chance: stochastic gene expression and its consequences. Cell 135, 216–226 (2008).
Lengauer, C., Kinzler, K.W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 (1997).
Park, S.Y., Gonen, M., Kim, H.J., Michor, F. & Polyak, K. Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J. Clin. Invest. 120, 636–644 (2010).
Navin, N. et al. Inferring tumor progression from genomic heterogeneity. Genome Res. 20, 68–80 (2010).
Reya, T., Morrison, S.J., Clarke, M.F. & Weissman, I.L. Stem cells, cancer and cancer stem cells. Nature 414, 105–111 (2001).
Emmert-Buck, M.R. et al. Laser capture microdissection. Science 274, 998–1001 (1996).
Freeman, W.M., Walker, S.J. & Vrana, K.E. Quantitative RT-PCR: pitfalls and potential. Biotechniques 26, 112–125 (1999).
Warren, L., Bryder, D., Weissman, I.L. & Quake, S.R. Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc. Natl. Acad. Sci. USA 103, 17807–17812 (2006).
van der Flier, L.G. et al. Transcription factor achaete scute-like 2 controls intestinal stem cell fate. Cell 136, 903–912 (2009).
Levsky, J.M. & Singer, R.H. Fluorescence in situ hybridization: past, present and future. J. Cell Sci. 116, 2833–2838 (2003).
van der Ploeg, M. Cytochemical nucleic acid research during the twentieth century. Eur. J. Histochem. 44, 7–42 (2000).
Gregorieff, A. & Clevers, H. In situ hybridization to identify gut stem cells. Curr. Protoc. Stem. Cell. Biol. chapter 11, unit 2F.1 (2010).
Pare, A. et al. Visualization of individual Scr mRNAs during Drosophila embryogenesis yields evidence for transcriptional bursting. Curr. Biol. 19, 2037–2042 (2009).
Randolph, J.B. & Waggoner, A.S. Stability, specificity and fluorescence brightness of multiply-labeled fluorescent DNA probes. Nucleic Acids Res. 25, 2923–2929 (1997).
Larson, D.R., Singer, R.H. & Zenklusen, D. A single molecule view of gene expression. Trends Cell Biol. 19, 630–637 (2009).
Femino, A.M., Fay, F.S., Fogarty, K. & Singer, R.H. Visualization of single RNA transcripts in situ . Science 280, 585–590 (1998). This pioneering work demonstrated single-molecule transcript imaging in fixed cells using multiply-labeled fluorescent probes.
Femino, A.M., Fogarty, K., Lifshitz, L.M., Carrington, W. & Singer, R.H. Visualization of single molecules of mRNA in situ . Methods Enzymol. 361, 245–304 (2003).
Maamar, H., Raj, A. & Dubnau, D. Noise in gene expression determines cell fate in Bacillus subtilis . Science 317, 526–529 (2007).
Zenklusen, D., Larson, D.R. & Singer, R.H. Single-RNA counting reveals alternative modes of gene expression in yeast. Nat. Struct. Mol. Biol. 15, 1263–1271 (2008).
Tan, R.Z. & van Oudenaarden, A. Transcript counting in single cells reveals dynamics of rDNA transcription. Mol. Syst. Biol. 6, 358 (2010).
Raj, A., Peskin, C.S., Tranchina, D., Vargas, D.Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006).
Capodieci, P. et al. Gene expression profiling in single cells within tissue. Nat. Methods 2, 663–665 (2005).
Raj, A., van den Bogaard, P., Rifkin, S.A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008). Single-molecule transcript imaging in cells and in fixed tissues was achieved using multiple singly labeled probes.
To, T.L. & Maheshri, N. Noise can induce bimodality in positive transcriptional feedback loops without bistability. Science 327, 1142–1145 (2010).
Khalil, A.M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA 106, 11667–11672 (2009).
Raj, A., Rifkin, S.A., Andersen, E. & van Oudenaarden, A. Variability in gene expression underlies incomplete penetrance. Nature 463, 913–918 (2010).
Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010).
Lu, J. & Tsourkas, A. Imaging individual microRNAs in single mammalian cells in situ . Nucleic Acids Res. 37, e100 (2009).
Larsson, C., Grundberg, I., Soderberg, O. & Nilsson, M. In situ detection and genotyping of individual mRNA molecules. Nat. Methods 7, 395–397 (2010). This work introduced a sensitive single-molecule transcript-imaging technique that uses padlock probes and in situ target-primed rolling-circle amplification in cells and tissues to specifically detect targets with a single nucleotide difference.
Wittung, P., Nielsen, P.E., Buchardt, O., Egholm, M. & Norden, B. DNA-like double helix formed by peptide nucleic acid. Nature 368, 561–563 (1994).
Lansdorp, P.M. et al. Heterogeneity in telomere length of human chromosomes. Hum. Mol. Genet. 5, 685–691 (1996).
Kloosterman, W.P., Wienholds, E., de Bruijn, E., Kauppinen, S. & Plasterk, R.H. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat. Methods 3, 27–29 (2006).
Player, A.N., Shen, L.P., Kenny, D., Antao, V.P. & Kolberg, J.A. Single-copy gene detection using branched DNA (bDNA) in situ hybridization. J. Histochem. Cytochem. 49, 603–612 (2001).
Levsky, J.M., Shenoy, S.M., Pezo, R.C. & Singer, R.H. Single-cell gene-expression profiling. Science 297, 836–840 (2002). This work substantially increased the number of targets that can be simultaneously imaged by using combination of probes labeled with spectrally distinct fluorophores.
Nederlof, P.M., van der Flier, S., Vrolijk, J., Tanke, H.J. & Raap, A.K. Fluorescence ratio measurements of double-labeled probes for multiple in situ hybridization by digital imaging microscopy. Cytometry 13, 839–845 (1992).
Nederlof, P.M. et al. Multiple fluorescence in situ hybridization. Cytometry 11, 126–131 (1990).
Park, H.Y., Buxbaum, A.R. & Singer, R.H. Single mRNA tracking in live cells. Methods Enzymol. 472, 387–406 (2010).
Golding, I., Paulsson, J., Zawilski, S.M. & Cox, E.C. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036 (2005).
Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998). This work introduced the MS2 method for single mRNA detection in live cells.
Fusco, D. et al. Single mRNA molecules demonstrate probabilistic movement in living mammalian cells. Curr. Biol. 13, 161–167 (2003).
Shav-Tal, Y. et al. Dynamics of single mRNPs in nuclei of living cells. Science 304, 1797–1800 (2004).
Haim, L., Zipor, G., Aronov, S. & Gerst, J.E. A genomic integration method to visualize localization of endogenous mRNAs in living yeast. Nat. Methods 4, 409–412 (2007).
Rackham, O. & Brown, C.M. Visualization of RNA-protein interactions in living cells: FMRP and IMP1 interact on mRNAs. EMBO J. 23, 3346–3355 (2004).
Tyagi, S. Imaging intracellular RNA distribution and dynamics in living cells. Nat. Methods 6, 331–338 (2009).
Valencia-Burton, M., McCullough, R.M., Cantor, C.R. & Broude, N.E. RNA visualization in live bacterial cells using fluorescent protein complementation. Nat. Methods 4, 421–427 (2007).
Ozawa, T., Natori, Y., Sato, M. & Umezawa, Y. Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nat. Methods 4, 413–419 (2007).
Tyagi, S. & Kramer, F.R. Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol. 14, 303–308 (1996). Molecular beacons were introduced for the detection of single mRNAs in live cells.
Vargas, D.Y., Raj, A., Marras, S.A., Kramer, F.R. & Tyagi, S. Mechanism of mRNA transport in the nucleus. Proc. Natl. Acad. Sci. USA 102, 17008–17013 (2005).
Bratu, D.P., Cha, B.J., Mhlanga, M.M., Kramer, F.R. & Tyagi, S. Visualizing the distribution and transport of mRNAs in living cells. Proc. Natl. Acad. Sci. USA 100, 13308–13313 (2003).
Lifland, A.W., Zurla, C. & Santangelo, P.J. Single molecule densitive multivalent polyethylene glycol probes for RNA imaging. Bioconjug. Chem. 21, 483–488 (2010).
Santangelo, P.J. et al. Single molecule-sensitive probes for imaging RNA in live cells. Nat. Methods 6, 347–349 (2009).
Thompson, R.E., Larson, D.R. & Webb, W.W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).
Grunwald, D., Singer, R.H. & Czaplinski, K. Cell biology of mRNA decay. Methods Enzymol. 448, 553–577 (2008).
McNally, J.G., Karpova, T., Cooper, J. & Conchello, J.A. Three-dimensional imaging by deconvolution microscopy. Methods 19, 373–385 (1999).
Smith, C.S., Joseph, N., Rieger, B. & Lidke, K.A. Fast, single-molecule localization that achieves theoretically minimum uncertainty. Nat. Methods 7, 373–375 (2010).
van der Flier, L.G. & Clevers, H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 71, 241–260 (2009).
Alon, U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007).
Bassell, G. & Singer, R.H. mRNA and cytoskeletal filaments. Curr. Opin. Cell Biol. 9, 109–115 (1997).
Klar, T.A., Jakobs, S., Dyba, M., Egner, A. & Hell, S.W. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
Rust, M.J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).
Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).
Hell, S.W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).
Shroff, H., Galbraith, C.G., Galbraith, J.A. & Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 5, 417–423 (2008).
Bassell, G.J. et al. Sorting of beta-actin mRNA and protein to neurites and growth cones in culture. J. Neurosci. 18, 251–265 (1998).
Choi, Y. et al. In situ visualization of gene expression using polymer-coated quantum-dot-DNA conjugates. Small 5, 2085–2091 (2009).
Chan, P., Yuen, T., Ruf, F., Gonzalez-Maeso, J. & Sealfon, S.C. Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization. Nucleic Acids Res. 33, e161 (2005).
Gonzalez-Maeso, J. et al. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452, 93–97 (2008).
Smith, A.M., Duan, H., Mohs, A.M. & Nie, S. Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Deliv. Rev. 60, 1226–1240 (2008).
Tholouli, E. et al. Imaging of multiple mRNA targets using quantum dot based in situ hybridization and spectral deconvolution in clinical biopsies. Biochem. Biophys. Res. Commun. 348, 628–636 (2006).
Ishihama, Y. & Funatsu, T. Single molecule tracking of quantum dot-labeled mRNAs in a cell nucleus. Biochem. Biophys. Res. Commun. 381, 33–38 (2009).
Weil, T.T., Parton, R.M. & Davis, I. Making the message clear: visualizing mRNA localization. Trends Cell Biol. 20, 380–390 (2010).
Tautz, D. & Pfeifle, C. A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98, 81–85 (1989).
Bloom, K.S. et al. Using green fluorescent protein fusion proteins to quantitate microtubule and spindle dynamics in budding yeast. Methods Cell Biol. 61, 369–383 (1999).
Acknowledgements
We thank S. Semrau, J.P. Junker, S. Mukherji and A. Lavi-Itzkovitz for valuable comments. This work was supported by the US National Institutes of Health National Cancer Institute Physical Sciences Oncology Center at the Massachusetts Institute of Technology (U54CA143874) and a US National Institutes of Health Pioneer award (1DP1OD003936) to A.v.O.; S.I. acknowledges support from the European Molecular Biology Organization, the Human Frontiers Science Program and the Machiah Foundation.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Itzkovitz, S., van Oudenaarden, A. Validating transcripts with probes and imaging technology. Nat Methods 8 (Suppl 4), S12–S19 (2011). https://doi.org/10.1038/nmeth.1573
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmeth.1573
This article is cited by
-
Understanding breast cancer heterogeneity through non-genetic heterogeneity
Breast Cancer (2021)
-
Live cell imaging and proteomic profiling of endogenous NEAT1 lncRNA by CRISPR/Cas9-mediated knock-in
Protein & Cell (2020)
-
ClampFISH detects individual nucleic acid molecules using click chemistry–based amplification
Nature Biotechnology (2019)
-
Spatial heterogeneity in the mammalian liver
Nature Reviews Gastroenterology & Hepatology (2019)
-
miR-17-92 and miR-106b-25 clusters regulate beta cell mitotic checkpoint and insulin secretion in mice
Diabetologia (2019)